

FEATURE DESCRIPTION

Sesam

Software suite for hydrodynamic and structural analysis of renewable, offshore and maritime structures

Sesam Feature Description

Date: September 2023

Prepared by: Digital Solutions at DNV

E-mail support: software.support@dnv.com

E-mail sales: digital@dnv.com

© DNV AS. All rights reserved

This publication or parts thereof may not be reproduced or transmitted in any form or by any means, including copying or recording, without the prior written consent of DNV AS.

TABLE OF CONTENTS

Intro	duction to Sesam	1	
	Sesam Manager	3	
	Applications Version Manager (AVM)	4	
	Sesam Interface Data	5	
	Import and export features of Sesam	7	
	Hardware and operating systems	9	
Geni	ie	10	
	Beam, plate and surface modelling	12	
	Finite elements and features for meshing	18	
	Modelling for structural analysis in Sestra	30	
	Modelling for wave and wind analysis in Wajac	31	
	Modelling for wave and motion analysis in HydroD/Wadam/Wasim	34	
	Modelling for pile-soil analysis in Splice	34	
	Modelling for non-linear static and dynamic analysis in Usfos	37	
	Local analysis using Submod	38	
	Explicit (point, line, surface) load modelling	38	
	Post-processing and reporting	41	
	Member and tubular joint code checking – require extension CCBM	44	
	Supported standards for member and tubular joint checking	46	
	48		
	Import and export data in GeniE		
Hydr	^ი D	50	
	General features	51	
	Features for hydrostatic and stability analysis	53	
	Features for hydrodynamic analysis (Wadam and Wasim)	57	
Sima	a	62	
Sesa	am Wind Manager	72	
Pres	el	77	
Subr	nod	81	
Wad	am	84	
muu	Model types		
	Analyses 88	00	
	Transfer of load to structural analysis	89	
	Theory and formulation	90	
Wasi	im		
		93	
	Analyses 90 Transfer of load to structural analysis	06	
	Theory and formulation	90	
	Theory and formulation	97	

Wamod			
Waveship	101		
Wajac			
Types of analysis	105		
Details on certain features	107		
Installjac	110		
Simo	112		
Sestra			
Types of analysis	117		
Elements, properties and loads	122		
Equation solvers	125		
Additional features	128		
Splice	130		
Usfos			
Vivana	138		
Mimooo	140		
Milliosa	140		
Riflex	143		
Postresp	146		
RAO	152		
Xtract	154		
Structural analysis results	155		
Hydrodynamic analysis results	155		
Other results	155		
Main features	156		
Models and results for presentation	162		
Hierarchical organisation of results	165		
Result cases	167		
Complex results	168		
Animation of dynamic behaviour	169		
Exporting data for further processing and reporting	170		
Framework	171		
Stofat	178		
Platework			
Cutres	187		
ShellDesign			
Sesam Feature Description	Page iv		
Sesam reactive Description Page IV			

The Conventional Design Method (CDM)	191
The Consistent Stiffness Method (CSM) for shell FE models	200
The Consistent Stiffness Method (CSM) for solid FE models	201
The Modified Compression Field Theory (MCFT)	202
Sesam Insight	.203
PET	.212
FatFree	.216
ST-F101	.220
RP-F101	.223
SimBuck	.226
StableLines	.229
Helica	.232
Cross-sectional load sharing analysis	233
Short-term fatigue analysis	236
Long-term fatigue analysis	238
Extreme analysis	238
VIV fatigue analysis	239
Validation	240
FNCorrosion	.241

Introduction to Sesam

Sesam is a software suite for hydrodynamic and structural analysis of ships and offshore structures. It is based on the displacement formulation of the finite element method. An overview of Sesam is shown below. The four groups of programs: preprocessors, hydrodynamic analysis programs, structural analysis programs and postprocessors, are bound together by a set of Sesam Interface Files and Formats, the green "H" in the figure. All major inter-program communication goes via this well-defined set of files. The exception is for Sesam Core that streams data from Sestra directly.

Sesam customers can access the functionality from pre-configured Sesam Packages or via customized enterprise packages. In many cases, the Sesam Packages will meet the demands for functionality. If not, a customized enterprise package can be made by contacting our sales staff.

<u>Sesam Manager</u> at top of the figure is the master control program of Sesam. Analysis workflows including any of the Sesam programs and of any complexity may be set up and run from Sesam Manager.

The main tools <u>GeniE</u>, <u>HydroD</u>, <u>Sima</u> and <u>Sesam Wind Manager</u>, are through their features for interactive modelling and controlling execution of analysis programs, entry points in the Sesam Packages for specific industries. Typically, programs in the hydrodynamics and structural groups are run from these main tools.

Sesam Overview

This document describes the main features of all programs in the Sesam suite. It describes *what* Sesam can do but not *how*. Details on features of the individual Sesam programs are found in the user documentation of the individual programs. Access these documents from Sesam Manager by File | Help and typing the program name in the Sesam user documentation field, or from the user interface of some of the interactive modelling tools.

Go to <u>sesam.dnv.com</u> to download Sesam programs, either by downloading packages or individual products. The access to Sesam is governed by license files that are installed on your desktop (node-locked installation or network server for local/wide area network installation).

Access the installation of the individual Sesam programs from AVM which is started from Sesam Manager by Tool | Start AVM.

This introduction to Sesam is organised in sections:

- Sesam Manager About the master control program of Sesam
- Applications Version Manager (AVM) About the version control manager of Sesam
- <u>Sesam Interface</u> About the files binding Sesam together
- Import and export features of Sesam About import from/export to CAE/CAD
- <u>Hardware and operating systems</u> Sesam computer recommendations
- For a detailed description of the Sesam Packages please refer to the Sesam Package Description

PACKAGE DESCRIPTION

Sesam

Software suite for hydrodynamic and structural analysis of offshore wind, offshore oil and gas, and maritime structures

Sesam Manager

Last revised: January 8, 2019. Describing version 6.6-02.

Sesam Manager manages Sesam analyses of any kind, from the simplest to the most comprehensive.

An analysis job is Sesam programs (applications) organised as activities in a workflow. The workflow may be of any length and complexity. Any other program/application may also be added to the workflow, e.g. your own program or an MS Office application.

[[][] [] [] [] [] [] [] [] [] [] [] []		Simple_Fram	e - Sesam Manager V	/6.5-01	
File Home View Too	ol				۵ 0
New SeniE Job New New	ew oD Job Open Jo Open	bs Save Save All Save	ML Zip JNL oort Import Import E ML ZIP JNL Import/Expo	tt	Run Selected Activity Process
Applications 🚽 🗸 🗸	< 💿 Start	📔 Quick Start 🛛 🔀 Simple_F	rame ×	Properties	
Control flow	Flow Chart	Tree View	75% 🗖 🖾	GeniEActivity GeniEModell	ing
E Sequence		E Simple_Frame	A	Search	×
Sesam applications Cutres		∇		 General 	A
DeenC				Name	GeniEModelling
EatiqueManager	=	GeniEModelling 🗠		Description	Modelling the frame
		Nidelling the trame	E	DatabaseName	GeniEModelling
GeniF		\bigtriangledown		DatabaseStatus	Old 👻 E
Gensod				Workspace	rkspaces\Simple_Frame\GeniEModelling\
MydroD		SestraStaticAnalysis 🗠		CmdInputFile	Edit
Installiac		Static analysis of the frame		UseLocalCmdInputFile	
Mimosa		\bigtriangledown		PreviousCmdInputFile	ne\GeniEModelling\Genie_Frame_inp.js Clear
S Pilgen				SuperElementNumber	1
		XtractPostprocessing 😤		InputMode	Interactive
Postresp	Message List		+ ‡ ×	ProgramVersion	Default In AVM
S Postresp time	CO Errors	0 Warnings 0 Mes	sages	SelectedLicenses	CurvedGeometry,FrameCodeCheck,Plate(
Prefem	Type Descript	ion	Source		
Reframe					
🚍 File Overvi		🚍 Marrago 🛛 🚍 Jah Com	A ctivity P	Departies 2 Attachm	ente
Applications	s Comman	Job Com.	Activity R	Ma Properties @ Attachm	ents
L					

Sesam Manager

Sesam Manager takes care of the data flow between the Sesam programs. The default file operation is transparent and can be modified to meet special requirements. Any document and file, e.g. analysis specifications and reports, may be attached to the job.

Taking advantage of the JavaScript® scripting language of Sesam Manager a job may be exported, edited and imported to establish a new revised job. A built-in ZIP import/export functionality allows jobs to be transferred between users whether they are in progress or completed.

In short, the purpose of Sesam Manager is to:

- Be a common starting point for all Sesam programs
- Ease the execution of Sesam programs and establish parts of the input
- Organise execution of the Sesam programs in the proper sequence for the task at hand
- Manage the files involved in an analysis project
- Establish workflow templates for analysis tasks of any complexity
- Provide easy archiving of an analysis job with its input and results files plus attachments

Applications Version Manager (AVM)

Last revised: April 9, 2018. Describing version 3.1.

Application Version Manager (AVM) provides an overview of Sesam program versions installed and offers control of which versions to be used. It also allows manually adding programs not installed as part of Sesam. Such programs are then easily available in e.g. Sesam Manager.

AVM is embedded in the main tools, see <u>Introduction to Sesam</u>. This means that changing for example which Framework version is default takes effect next time GeniE is started and Framework is started from GeniE.

Start AVM as a separate application or from the Tool menu in Sesam Manager.

🗴 Application Version Manager V3.1-01 - by DNV GL Software 🥼 🚽 🗸						
Refresh Add new Edit Remove List of monitored applications						
Name	Version	Default	Category 😽	Platform	Product Type	7
Bpopt	5.8.4		Sesam	32-bit	V	=
Cutres	1.5.3		Sesam	32-bit	V	
DeepC	5.1.3		Sesam	64-bit	V	
FatFree	12.0.3		Sesam	32-bit	V	
Fatigue Manager	3.5.244		Sesam	64-bit	V	
Framework	3.15.0		Sesam	32-bit	V	
Framework	3.14.1		Sesam	32-bit	V	
Framework	3.13.0		Sesam	32-bit	V	
GeniE	7.8.2		Sesam	64-bit	V	
GeniE	7.7.4		Sesam	64-bit	V	
Helica	2.5.1		Sesam	32-bit	V	-
Path to executable file: C:\Program Files\DNVGL\GeniE V7.8-02\Program\GenieR.exe Explore Path to installation folder: C:\Program Files\DNVGL\GeniE V7.8-02\ Explore						

Applications Version Manager (AVM)

Sesam Interface Data

The Sesam Interface Data are comprised of a set of files for which the most commonly used names are T1.FEM, L1.FEM and R1.SIN. These are shown in the simplified Sesam overview figure below.

Sesam overview with focus on Sesam Interface Files

The Sesam Interface Files are comprised of the following:

- Input Interface Files e.g. T1.FEM, T3.FEM, T21.FEM, etc.
 - The model created by the preprocessors is contained in these files. The number in the file name can be any number from 1 to 9999 and is used to distinguish separate models (e.g. panel mesh for hydrodynamic analysis and FE mesh for structural analysis, different versions of the same model, different superelements, etc.). The short names T-file and FEM file are often used for these files. The contents of the file are:
 - o FE/panel model with nodes, elements, material, boundary conditions and loads
 - o 2nd or higher level superelements when using the multilevel superelement technique
- Loads Interface Files e.g. L1.FEM, L3.FEM, etc.

Hydrodynamic loads computed by environmental programs are stored in these files. They pertain to corresponding Input Interface Files: L1.FEM belongs to T1.FEM, L3.FEM belongs to T3.FEM, etc. The contents of the file are:

- o Hydrodynamic beam line and surface pressure loads, deterministic or transfer functions
- o Inertia and gravity loads
- o Point loads from anchor or TLP elements
- Matrix Interface Files e.g. M21.SIF (or M21.SIU or M21.SIN)

 These files are far evolutions of matrix data like stiffness mass domning

These files are for exchange of matrix data like stiffness, mass, damping and loads. The most common usage is exchange of data between Sestra and Splice. The contents of the file are:

• Stiffness, mass and damping matrices

- Load vectors
- Nodal displacements
- Structural Results Interface Files e.g. R21.SIN (or R21.SIF or R21.SIU) Structural (FE) analysis results are stored in these files ready for further processing by a postprocessor. The short names R-file and SIN file are often used for this file. Notice that Sesam Core streams data from Sestra directly. The contents of the file are:
 - FE model (= Input Interface File)
 - o Nodal displacements
 - Beam forces
 - o Element stresses
- Hydrodynamic Results Interface Files typically named G1.SIF (or G1.SIU or G1.SIN)
 Hydrodynamic rigid body motion results are stored in these files. The short name G-file is often used for this file. The contents of the file are:
 - o Transfer functions for rigid body motion of floating structure
 - o Hydrodynamic coefficients
 - Sea surface elevation and off-body kinematics
 - Transfer functions for base shear and overturning moments for fixed frame structure
 - o Transfer functions for sectional loads
 - Transfer functions for forces and stresses in selected elements

Tools for conversion between Sesam and other formats, i.e. CAE and CAD programs, is covered in section <u>Import and export features of Sesam</u> below.

There are also auxiliary tools for manipulating the Sesam Interface Files:

- Loads Interface Files may be manipulated in various ways by the auxiliary program Waloco:
 - Merge two and more files from different Wajac/Wadam/Wasim runs
 - Renumber the load cases
 - Conversion between formatted and unformatted (FEM extension for both)
- Results Interface Files may be manipulated in various ways by the auxiliary program Prepost:
 - o Merge two and more files from different Sestra runs
 - o Copy data from one file to another
 - o Conversion between formatted (SIF), unformatted (SIU) and database format (SIN)
 - Result combinations may be created (alternatively to creating combinations in GeniE)
 - Extraction of transfer functions for selected elements and results and storage on Hydrodynamic Results Interface Files (G-file)

Import and export features of Sesam

The table below presents the possibilities for import and export of model data between Sesam and other CAE and CAD data formats.

FORMAT	WHICH DATA	IMPORTED BY	EXPORTED BY
SACS INP and PSI files	Structure, segmented members, concentric members, sections, materials, loads, weight, load combinations, wave load data, multiple water depths, sea state dependent coefficients, marine growth data, wind velocity, wind area, pile, wishbones, soil, member code check data, corrosion data, cone and joint can reinforcement	GeniE	
StruCad3D S3D file	Structure and loads	GeniE and Prepost	
Spatial Technology ACIS SAT file	Structure only	GeniE (curves and surfaces) and MSC Apex	GeniE and MSC Apex
CadCentre PDMS SDN (SDNF) file	Structure only, member system lines and eccentricities	GeniE	GeniE
Intergraph PDS SDN (SDNF) file	Structure only, member system lines and eccentricities	GeniE and Prepost	GeniE and Prepost
Rhinoceros (Rhino) GRC file	Guiding NURBS curves using a plug- in functionality in Rhinoceros, plug-in provided by DNV GL – Software	GeniE	GeniE
AutoCAD DXF file	Guiding points and NURBS curves, other curve definitions imported by script functionality	GeniE	
Ansys CDB + S0* files	Structure and loads	Prepost	Prepost
Nastran BDF file	Structure and loads	GeniE, Sesam Converters and MSC Apex	Sesam Converters and MSC Apex
STAAD.Pro STD file	Structure, loads and load combinations	StaadToSesam	
Parasolid XT file	Structure only	MSC Apex	MSC Apex
IGES IGS file	Structure only	MSC Apex	MSC Apex

STEP STP file	Structure only	MSC Apex	MSC Apex
CATIV V4 MODEL and EXP files	Structure only	MSC Apex	
CATIV V5 CATPART and CATPRODUCT files	Structure only	MSC Apex	
Inventor IPT and IAM files	Structure only	MSC Apex	
Pro/Engineer / Creo PTR and ASM files	Structure only	MSC Apex	
SolidWorks SLDPRT and SLDASM files	Structure only	MSC Apex	
Unigraphics/NX PRT file	Structure only	MSC Apex	
Intergraph S3M XML file	Structure only	MSC Apex	

MSC Apex is a tool owned by MSC Software for creating finite element models from geometry models.

Hardware and operating systems

Sesam is supported on Windows 10 (64-bit).

Minimum hardware recommendation

This recommendation is for tasks like jacket, deck and topside design analyses including wave and pile-soil analysis. Hydrostatic analysis and smaller hydrodynamic analysis in frequency domain can also be done.

- Graphics card: Open GL or DX11 compatible. May be integrated with a processor (e.g. Intel HD)
- Memory: 8-16 GB
- Processor: Dual core, Intel I5 or equivalent 64-bit version of Windows operating system
- Storage: 250-500 GB
- Display: 17" supporting 1280x1024, alternatively laptop 15" supporting 1280x1024

Preferred hardware recommendation

This recommendation is for all types of Sesam analysis, also larger models of ships or similar structures with beam and shell elements.

- Graphics card: In general, a dedicated DX11-compatible GPU with at least 1 GB (preferably 2 GB or more) dedicated GPU RAM, especially for larger models
- Memory: 16-32 GB
- Processor: Quad core, Intel I7 or equivalent
- Storage: 500 GB 1 TB
- Display: 24" supporting 1900x1200 (or -1080), alternatively laptop 17" supporting 1900x1200 (or -1080)

Graphics driver

By 'graphics driver' below is meant the system level software provided by your graphics card supplier (most likely Intel, NVIDIA or ATI) to interface between Windows and the GPU. This is supplied with your operating system or graphics card.

By 'GeniE graphics driver' below is meant the software used by GeniE to interface with the graphics driver defined above.

Use of DX11

DirectX 11.0 is the preferred GeniE graphics driver and it is the default on installation.

Use of DX9

GeniE will run on integrated Intel CPU/GPUs and on older GPUs using legacy driver.

Use of OpenGL

The GeniE OpenGL2 driver is a shader-based driver that is offered as an alternative should a user encounter problem with other drivers. It attempts to support all OpenGL 2.0+ hardware.

GeniE

CONCEPT MODELLING OF BEAM, PLATE AND SHELL STRUCTURES, ANALYSIS WORKFLOWS AND CODE CHECKING

Last revised: November 24, 2022. Describing version 8.3 (64-bit).

GeniE is a tool for concept (high level geometry) modelling of beams and stiffened plates and shells (curved surfaces). Load modelling includes equipment (with automatic load transfer), explicit loads (point, line and surface) and wind loads. The model is transferred to <u>Sestra</u> for structural analysis, to <u>Wajac</u> and <u>Wadam</u> for hydrodynamic analysis, to <u>Splice</u> for pile-soil analysis and to <u>Installjac</u> for launching and upending analysis. GeniE includes predefined analysis set-ups (workflows) involving Sestra, Wajac and Splice. General basic results presentation can be carried out as well as code checking of members and tubular joints.

FEATURES OF GENIE

The features of GeniE are organised in sections:

- Beam, plate and surface modelling
- Finite elements and features for meshing
- Modelling for structural analysis in Sestra
- Modelling for wave and wind analysis in Wajac
- Modelling for wave and motion analysis in HydroD/Wadam/Wasim
- Modelling for pile-soil analysis in Splice
- Modelling for non-linear static and dynamic analysis in Usfos
- Local analysis using Submod
- Explicit (point, line, surface) load modelling
- Post-processing and reporting
- Member and tubular joint code checking require extension CCBM
- Supported standards for member and tubular joint checking
- <u>Plate code checking requires extension CCPL</u>
- Import and export data in GeniE

GeniE has several extensions, i.e. features screened off for users of the basic version of the program. Access to an extension is subject to agreement and a valid license file. These extensions are:

CGEO – <u>curved geometry modelling</u>, includes <u>partial meshing</u> and all mesh editing except features covered by the REFM extension

REFM – refined meshing, includes <u>refine mesh for grid, edge and box</u>, <u>detail box for refined meshing</u> and <u>convert beam to plate</u>

CCBM - code checking beams

CCPL – <u>code checking stiffened plates</u>

There is also a special version (GeniE.lite) that is the same as GeniE including extensions CGEO, CCBM and CCPL, but limited to 10,000 finite elements and 500 beam concepts. Wave loads (Wajac) and pile-soil analysis (Splice) is not included.

Moreover, there is a special version (GeniE.RClite), part of Nauticus Hull FEA, with limited features aimed at doing calculations according to the CSR BC&OT (bulk carrier and oil tanker) as well as DNV GL 1A ship and offshore rules. The CGEO extension is excluded so modelling cannot be done by this version.

The full version of GeniE allows limiting menus and buttons to the those relevant for a specific task by selecting modes: full, ship and jacket.

Beam, plate and surface modelling

FEATURE	DESCRIPTION
Unit support m? mm? inch?	Units may be mixed throughout the modelling. The data logging (scripting) ensures that re-creating the model gives the same result. Unit information is stored on the Sesam Input Interface File (FEM file).
Flat plates and beams	By default, there is connectivity between beams and plates/shells that geometrically connect at their centre lines/planes. The user may, however, disconnect structural components, see a separate description of this feature below. Beams connected to plates/shells may be flushed (given offsets/eccentricities) so as to become stiffeners. Beams and plates/shells may be created in GeniE or imported from other CAE systems. A plate may be changed to a membrane (no bending stiffness).
Thickness Thickness Thickness Thickness Thickness Thickness Thickness Thickness Thickness	Thicknesses are defined and assigned to plates/shells.
Beam cross sections (profiles)	Beam cross sections are defined and assigned to beams: pipe, massive bar, box, symmetrical I/H, double web plate girder, boxed plate girder, angle, channel, unsymmetrical I/H, general and tubular cone. Derived properties (area, moment of inertia, section modulus) are calculated based on geometry but may be edited by the user. In addition, GeniE includes section libraries from AISC, EURONORM, Norwegian Standard and BS in addition to typical ship libraries.

Beam classification	Beams may optionally be assigned beam classifications such as primary, secondary, tertiary and auxiliary. This eases keeping the most important structural components in focus. In later versions, this classification will be used to auto setup code checking parameters.
Segmented beams	A segmented beam is a beam split into multiple parts. Segmented beams are typically used for modelling beams with variable section and/or material. The automatic modelling of tubular joints with cans, stubs and cones also involves segmented modelling.
Overlapping beams	Overlapping beams are typically used to define pile in leg and other cases of double beams. By default, overlapping geometry is prevented so a distinct action must be taken to create overlapping beams.
Grouted members	Easy definition of outer leg and inner pile to define overlapping beams including the connectivity (fixed, free, stiffness) along the member length. The stiffness of grout between pile and leg may thus be included in a linear analysis. The mass of grout must be added to the overlapping member. Overlapping beams with connectivity may be modelled either in a single operation (grouted beam modelling) or by first modelling a normal beam and thereafter adding overlapping beam, inner beam and mesh properties.

Truss, tension only, compression only elements	A truss is a straight beam that has stiffness in axial direction only, i.e. no bending stiffness. The truss element can be active in both directions or it can be used to represent a tension-only or compression- only element. Note that use of tension-only and compression-only elements involve non-linear analysis (tension/compression analysis).
Non-structural beams Non-structural beams for conductors to get contribution to weight, wave and current loads but not to stiffness Beam Type Nonstr	A non-structural beam does not include stiffness. It is used to contribute to a model with weight, wave and current loads. Typical uses are conductors, risers and secondary structures not contributing with significant stiffness. Non-structural beams must be connected to the structural model at both ends to avoid nodes with zero stiffness. Alternatively, they can be connected to support rigid links (master-slave), point-point connections or be fixed.
Shim connections Shim connection is lateral spring stiffness between conductors and conductor guide	Between conductors and conductor guides there are typically shim connections. These are lateral connections using linear spring elements. Assigning shim property to conductor beams automatically generates the shim connections. This is available for non-linear as well as for linear analysis.
Point-point connections (PPC) Point-point connection gives full control of connection between overlapping beams	The default behaviour of GeniE is full connection between structural components that overlap geometrically. However, it is possible to specify the connection between overlapping beams (such as pile and outer leg) to be fully connected, disconnected or linear spring connection. Moreover, contact connection may be specified, e.g. in a jack-up model, for a non-linear gap-contact analysis.
Disconnected structural components	It is possible to disconnect structural components. Typical examples are disconnected beams in an X joints and stiffener beams disconnected from the plate. It is also possible to disconnect plate edges (e.g. a crack). Such disconnection is available from the script language.

Hole Create mesh Delete hole	Holes may be defined as concepts. A hole concept on a plate involves that the meshing creates a hole. Deleting the hole leaves the plate complete. The hole dimensions are automatically transferred to the buckling plate code checks. Holes may also be defined by punching a plate by a closed guide curve or a profile.
General about topology modelling	 When inserting, moving or deleting beams and surfaces the connectivity between structural objects is kept updated. This means that if two objects geometrically coincide, they will be connected. Hence there is no need to manually define or delete connections. Beams and surfaces may be split at intersections thereby enabling trimming (deleting protruding parts) to flush parts.
Compartment modelling	Compartments may automatically be created for volumes enclosed by surfaces. The compartments may be filled with liquid and solid matter in GeniE or from Nauticus Hull. The compartment contents will contribute with loads (e.g. weight) in a structural analysis. Compartment contents may also be used by <u>HydroD</u> in hydro-static and hydrodynamic analyses.
Non-structural plate	A non-structural plate has no mass or stiffness. Its sole purpose is to close a volume in case there are openings in the enclosing surfaces. A typical example is an open compartment in a bulk ship.
Slot and lug	A slot is a cut-out where a plate is intersected by a stiffener beam. A lug is piece of plate fixing the stiffener web to the intersected plate. A slot and lug are for plate code checking purposes only. The FE mesh is not affected.
Point mass	Point masses may be inserted at given positions along a beam or a plate edge. The point mass may be of type uniform (mass is specified) or generic (properties for all 6 degrees of freedom are specified).

Loads converted to mass	Various features for converting explicit loads and load combinations including load factors to mass for dynamic analysis.
Mass scaling	A named set (a group of structural components) may be defined to have a designated mass. GeniE will scale the material density for the set to hit the target mass. That way the centre of gravity is maintained.

FEATURE DESCRIPTION Finite element types GeniE can create the following finite element types: Truss, including tension-only and • compression-only Two-node beam, optionally hinged Two-node spring and damper offset or eccentricity (infinitely stiff connection beam end Three-node beam (GeniE term: second order) $\xi = -1$ (no stress $\xi = 1$ (no st $\xi = 3^{-0.5} = 0.57735$ 0 (no stress point) ξ -0.57735point) Three-node triangular flat plate Four-node quadrilateral flat plate For both triangular and quadrilateral above there are three additional versions: o Membrane, i.e. no bending stiffness With drilling degrees of freedom 0 With improved description of thick 0 shell behaviour nodes stress points Six-node triangular curved shell (GeniE term: second order) stress point Eight-node quadrilateral curved shell (GeniE term: second order) node stress point For both triangular and quadrilateral above (second order) also membrane versions

Finite elements and features for meshing

Hinges node c_f beam end v_f beam end and node separated only for illustration purposes	Hinges may be inserted at ends of two-node beams to release their connections fully or partly to the nodes. Each of the six degrees of freedom may be fixed, released or connected with spring stiffness to the node. Command: Properties > Hinges > New Hinge
Mesh always reflects geometry	Basic geometry (beams, plates and shells) determines the FE mesh. Where geometry intersects, there will be mesh points (nodes) and lines. There is no need for ensuring mesh connectivity. Structural components may, however, be disconnected as described separatly above.
Mesh part of structure	A set containing a part of the model may be meshed as a separate FE model. This could be to create a superelement (for superelement analysis) or to create a sub-model (for sub-modelling analysis). The boundary conditions at the cut planes (super for superelement analysis and prescribed displacements for sub-modelling) should be contained in the set.
	Any number of such part FE models may be created. The example to the left shows a part of a model meshed as a separate FE model with boundary conditions.
	Command: Right-click meshing activity Edit Mesh Activity

Modelling for structural analysis in Sestra

FEATURE	DESCRIPTION
Materials	GeniE supports linear isotropic material, isotropic shear material and orthotropic material (material axes are aligned with the global axis system). Plates with shear material are typically used for connecting pile sleeve and leg.
Hinges Node Node Node and beam end separated for illustration purposes	Hinges may be inserted at beam ends to release their connections fully or partly to the node. Each of the six degrees of freedom may be fixed, released or connected with spring stiffness.
Boundary conditions	Boundary conditions (or supports) may be of type fixed, free, spring-to-ground, spring matrix or damper to ground. Furthermore, it is also possible to specify prescribed displacements for each load case.
Corrosion addition	Corrosion additions are applied to a plate, surface or beam to reduce the thickness to be used in the structural analysis. The corrosion addition is specific to an analysis which means that it is possible to run several analyses with alternative corrosion additions.
Analysis types Activity Duration Statu I - StaticAnalysis - Analysis S Succession I - StaticAnalysis - Analysis S Succession I - Heshing (Always Rege 0s Succession I - I - Delete mesh Os Succession I - I - Cenerate mesh S Succession I - 2 - Linear Structural Analy S Succession R - 1.3 - Load Results Os Succession I - Eigenvalue - Analysis S Succession I - 1.1 - Delete loads S Succession I - 1.1 - Delete loads S S I - 1.1 - Delete loads S S I - 2 - Generate loads S S	 There are built-in analyses running <u>Wajac</u>, <u>Splice</u> and <u>Sestra</u> programs in the background: Linear static, eigenvalue and dynamic structural analysis Equivalent static loads (ESL) analysis following a time domain dynamic analysis Equivalent static loads analysis for ULS Non-linear tension/compression analysis Wave load calculation Wave load plus integrated structure-pile-soil analysis Sesam Manager may be used to run additional analyses, like gap/contact and collapse analysis (in Usfos) with model created in GeniE.

Modelling for wave and wind analysis in Wajac

FEATURE	DESCRIPTION
Flooding	Flooding is used to specify which members are filled with water. Members are by default non-flooded. Flooding involves that only the steel volume contributes to buoyancy.
Buoyancy	 Buoyancy may be combined with the wave forces or singled out as a separate case. The buoyancy accounts for the steel sectional area plus entrapped air (unless flooded). The buoyancy may be switched off for selected members. A buoyancy area may optionally be defined to override the area computed by Wajac for tubular or non-tubular sections for use in the buoyancy calculation. The buoyancy is calculated up to the wave crest/trough in deterministic analysis. The buoyancy may be computed as: Line load perpendicular to the member plus concentrated forces in the ends (rational method)
/ Rational method Marine method	• Vertical line load (marine method)
Morison coefficients for wave loads	The Morison coefficients (C _m and C _d) may be defined in several ways: constant value, function of diameter, function of Roughness/Reynolds number, function of Roughness/KC number, by rule (API RP 2A-WSD 21 st edition) and directionally dependent.
Marine growth Hydro Marine Growth MarineGrowthConstant1 MarineGrowthZLevel1	By adding marine growth, the hydrodynamic diameter is increased. In addition, the mass and added mass of the marine growth is included in the analysis. The weight of the marine growth may optionally be included in the hydrostatic buoyancy calculation.

Hydrodynamic diameter	The hydrodynamic diameter is used to manually override the diameter computed by Wajac for tubular or non-tubular sections for use in wave load calculation. An application may be to substitute the equivalent diameter, the diagonal, for a box section with a more suitable value.
Conductor shielding	Reduce drag and inertia coefficients for conductor arrays due to shielding effects (conductor shielding factor) according to API (API RP 2A-WSD 21 st edition).
Element refinement 3 segments for submerged part Hydro Element Refinement Element Refinement 1	A member is by default divided into two segments for calculation of the wave loads. Only the submerged part is considered. Using the element refinement property, a member may be divided into up to 20 segments for more precise wave load analysis.
Air drag	The Morison coefficient C_d for wind load calculation may be defined as a constant or as a function of Reynolds number. Wind shielding is achieved by setting $C_d = 0$.
Wind load area Wind load on a side wall of an equipment Wind load on a surface	Wind load area is an area defined by the user for computation of wind loads. A wind load area can be a surface, a dummy wall connected to members, or a side wall of an equipment.
Water depth	The water depth is used to define the location of the sea surface. It is possible to include multiple sea surface elevations in one analysis.

Wave theory Stokes 5th	The selection of wave theory (Airy, Stokes 5 th order, Cnoidal and Stream Function) to be used in Wajac is done in GeniE. For more information see <u>Wajac</u> .
Current	The current may be defined to act in the same direction as the wave or in any specified direction.
Wave load analysis	Deterministic wave load analysis (stepping a wave) may be performed by using GeniE's built-in analysis activity. All model and execution data are generated in GeniE. Wajac computes and stores for subsequent structural analysis the wave plus current loads for all wave steps or for only steps of maximum/minimum base shear and/or overturning moment. Short term sea state simulation (time domain) and frequency domain wave load analyses may be executed by using model data given in GeniE plus manually edited additional Wajac input data. Such Wajac analyses may also be part of a workflow established in Sesam Manager.
Wind profile	Several wind profiles may be defined. There are two user defined profiles (normal and general) and two profiles according to API, the 1 st edition (termed Extreme) and 21 st edition (termed Extreme API21).
Wind load analysis	A wind load analysis may be performed separately or in combination with a wave load analysis. As for a wave load analysis, the loads are stored for a subsequent structural analysis. All model and execution data are generated in GeniE. Wind loads are a combination of member (beam) loads and area loads. The member wind load calculation is done in Wajac while wind loads on areas, surfaces and equipments are calculated in GeniE.

Modelling for wave and motion analysis in HydroD/Wadam/Wasim

FEATURE	DESCRIPTION
Wet surface	Wet surfaces are used to identify which side of which surfaces are exposed to water. This information is used by <u>HydroD</u> and <u>Wadam</u> for calculation of motion and hydrodynamic pressures. Wet surfaces are also assigned to models that shall receive pressure loading from Wadam or <u>Wasim</u> .
	A section model is a set of curves describing the outer geometry of a floater. This can be imported into HydroD in which a panel model is established based on this geometry. This is the mandatory way of making a panel model for Wasim, and an optional way of making a panel model for Wadam.

Modelling for pile-soil analysis in Splice

FEATURE	DESCRIPTION
Piles	A pile is modelled as a straight beam. In most cases, it is represented as a segmented beam as there are changes in the thickness along the pile length. There is no need to manually specify the intersections with the soil layer as this is cared for by GeniE.
Pile characteristics	The pile characteristics is a separate type of property allowing section stiffness values to be overruled (e.g. overruling un-grouted pipe values due to grouting). Moreover, special pile tip boundary conditions may be specified. It is also possible to add the density of fluid/soil inside the pile.

Modelling for non-linear static and dynamic analysis in Usfos

FEATURE	DESCRIPTION
Export model to <u>Usfos</u>	The model created in GeniE may be exported to Usfos with loads and load combinations plus environmental data. The data are represented as Usfos UFO formatted files. Environmental loads may be calculated by <u>Wajac</u> and exported to Usfos, or environmental data may be exported to UFO formatted commands for Usfos to calculate these loads. Boat impact loads may also be specified in GeniE and exported to Usfos.
Control Usfos analysis Very Puth Over Data Checks Fem No	Data controlling the Usfos analysis are entered in dialogs within GeniE and exported to Usfos together with the model. This substantially reduces the need for editing the Usfos input.

Local analysis using Submod

FEATURE	DESCRIPTION
Automised local analysis Cargo hold analysis – global analysis Local analysis of detail with geometry details and fine mesh	Having performed an analysis of a ship cargo hold model and having created a refined model of a detail, a local analysis can be done. This involves running <u>Submod</u> in the background. Loads are automatically transferred from the global to the local model.

Explicit (point, line, surface) load modelling

FEATURE	DESCRIPTION
Point loads	A force or a moment applied at a given position. Must be connected to a beam or a plate edge.
Line loads	A line load (constant or linearly varying) applied along the whole or part of a beam. May be applied to segmented beams and individual parts of overlapping beams.
Surface loads Pressure variation defined by values in three points Description: Surface Pressure Name: SLoadI Load Intensities: Three point varying Pressure 1: Point(245 m11 m12.5 m) (0) [KPa] 3: Point(25 m22 m12.5 m) (-100) [KPa]	A surface load may be specified as X, Y and Z component pressure, normal pressure and traction. The variation of these may be constant, linearly varying and any variation as given by a JavaScript function. The load may be applied to any part of any surface.

Wind load on a side wall of an equipment Wind load on a surface	Wind loads are combinations of member loads and area loads. The area loads are generated in GeniE and combined with member loads from Wajac. The area loads are computed based on user defined areas, surfaces or equipment walls that are exposed to wind.
Load combinations LComb1 = LCGrav*1.2 + LCBuoy*1.0 + LCWave*1.6 + LCWind*1.6	Load combinations may be nested, i.e. a load combination may include another load combination. Load combinations can include loads from hydrodynamic and wind load analysis, and they can be designated as an operation or storm condition for use by the API member code check.

Post-processing and reporting

FEATURE	DESCRIPTION
Displacements Undeformed model	Displacements for beams and plates are shown as contour plots in a 3D view. The deformed model may be viewed together with the un-deformed model. For a beam a cubic interpolation between the beam ends may be performed by including end rotations – this gives a realistic deformation pattern with a single beam element along a member.
Beam deflections GeniE V8.9-05 Date: 18 Oct 2014 18:05:10 0.0012 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0001139 0.0002 0.0002 0.0001139 0.0002 0.0002 0.0002 0.0001139 0.0002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.00	Deflections along a member may be computed and presented in a 3D view and a 2D graph. It is also possible to do a check against the AISC provision of maximum deflection 1/180, 1/240 and 1/360 of the span. Envelopes (maxima and minima) over result cases may be presented in the 2D graph.
Plate and shell stresses	GeniE presents element stresses (G-stress) for plates and shells as contour plots in 3D view. These are stresses extrapolated and interpolated from the result points within the individual elements. There is no averaging between adjoining elements. Stress components (sigxx, sigyy, tauxy,), von Mises stress and principal stresses (P1, P2, P3) may be presented. More post-processing capabilities for stresses are available in <u>Xtract</u> that can be started from the GeniE user interface.
Principal plate and shell stress vectors	Principal stresses P1, P2 and P3 may be shown as vectors on top of a contour plot of any displacement or stress component.

Save graphics	Graphics of the 3D view may be saved to alternative formats: gif, png, jpg, ps, bmp, tga, tif, pdf, hsf, hmf, obj and ply. The resolution of the graphics file is controlled by specifying number of pixels. The 2D graph may be copied as a bitmap to the clipboard for pasting into a document.
	A tabular report can be saved to alternative formats: txt, html, MS Word (xml) and MS Excel (xml and csv). The user has full control of the content of the report. The report content is stored in the database so that it is easy to reproduce the report after model changes. The report may include: • Model data: • Beam and plate data • Properties • Masses • Loads • FE analysis results • Code checking results • Graphics • Your own text added

Member and tubular joint code checking – require extension CCBM

FEATURE	DESCRIPTION
Code check analysis istability istability istrength istrength <td>The following code checks are performed: Member check Hydrostatic collapse Punching shear Conical transition Code checks are performed for section profiles: Pipe Symmetrical/un-symmetrical I/H Channel Box Massive bar Angle General Torsion warping included for non-tubulars</td>	The following code checks are performed: Member check Hydrostatic collapse Punching shear Conical transition Code checks are performed for section profiles: Pipe Symmetrical/un-symmetrical I/H Channel Box Massive bar Angle General Torsion warping included for non-tubulars
Code checking model	The capacity model is generated in GeniE and normally includes code checking parameters such as member buckling length and buckling factors, chord, can, stub and cone.
Code checking parameters	Each standard has its own set of code checking parameter values. These values are the default values in GeniE, but the user can manually override them if desired. The implementation of each code check standard is described in technical notes that are part of the GeniE installation.

Member redesign	The redesign tool allows the user to modify parameters like section size, material quality and buckling length and immediately see the effect on the code check result. Multiple members may be evaluated at the same time. Such redesign is based on the assumption of no redistribution of forces caused by the redesign. Final code check results based on redistribution of forces are generated by transferring redesign changes back to the model, re-running the structural analysis, generating code check results and updating the report(s). This is available from a single action in GeniE.
Tubular joint – chord thickness requirement	For API WSD 2005 GeniE will report the chord thickness required to pass the code check (i.e. utilisation factor less than 1.0).
Complex results	Complex results from a frequency domain analysis may also be code checked. A combination of a static (non-complex) and a complex result case is code checked at given phase step intervals: $F(\alpha) = \text{Static} + R \cdot \cos(\alpha) - I \cdot \sin(\alpha)$
Result presentation UfTot UfTot Colspan="2">O.01 >= 0.01 >= 0.5 >= 0.8 >= 1 >= 1.33	The code check results may be presented in a 3D view or in tables on screen. The code check results may also be saved to a report as shown <u>above</u> .

Supported standards for member and tubular joint checking

FEATURE	DESCRIPTION
American offshore standards energy Revealed a construction of the standards a merican petroleum institute of the standards of	 API-WSD 2002 – Offshore structures Tubular: American Petroleum Institute RP 2A-WSD (21st edition December 2000, Errata and Supplement 1, December 2002) Non-tubular: American National Standard; Specification for Structural Steel Buildings, AISC 360-xx (Steel Construction Manual 13th, 14th and 15th editions) API-WSD 2005 – Offshore structures Tubular: American Petroleum Institute RP 2A-WSD (21st edition December 2000, Errata and Supplement 2, October 2005) Non-tubular: American Petroleum Institute RP 2A-WSD (21st edition December 2000, Errata and Supplement 2, October 2005) Non-tubular: American National Standard; Specification for Structural Steel Buildings, AISC 360-xx (Steel Construction Manual 13th, 14th and 15th editions) API-WSD 2014 – Offshore structures Tubular: American Petroleum Institute RP 2A-WSD (22nd edition November 2014) Non-tubular: American Institute of Steel Construction, Allowable Stress Design and Plastic Design, AISC 9th (June 1, 1989) API-LRFD 2003 – Offshore structures Tubular: American Petroleum Institute LRFD (1st Edition/July 1, 1993/ Reaffirmed, May 16, 2003) Non-tubular: American National Standard; Specification for Structural Steel Buildings, AISC 360-xx (Steel Construction Janual 13th, 14th and 15th editions)
NORSOK offshore standards	 NORSOK 2004 and 2013 – Offshore structures Tubular: NORSOK STANDARD N-004, Rev. 2, October 2004, and Rev. 3, February 2013. Design of steel structures Non-tubular: EUROCODE 3, EN 1993 Part 1-1: General rules and rules for buildings. It is also possible to select the preferences according to the Norwegian and Danish National Annexes

ISO offshore standards	ISO 19902 2007 – Offshore structures
ISO	 Tubular: INTERNATIONAL STANDARD ISO 19902, Petroleum and natural gas industries — Fixed steel offshore structures (First edition 1 December 2007) Non-tubular: EUROCODE 3, EN 1993 Part 1-1: General rules and rules for buildings. It is also possible to select the preferences according to the Norwegian and Danish National Annexes
American onshore standards	AISC 360-05, 360-10 and 360-16 – Onshore structures:
TOURDED 1821 *	 Tubular and non-tubular: American National Standard; Specification for Structural Steel Buildings", versions from March 9, 2005, June 22, 2010, and July 7, 2016. These versions are supported by AISC Steel Construction Manual 13th, 14th and 15th editions. The check covers design/utilisation of members according to the provisions for Load and Resistance Factor Design (LRFD) or to the provisions for Allowable Strength Design (ASD). AISC 335-89 – Onshore structures
	 Tubular and non-tubular: American National Standard; Specification for Structural Steel Buildings", June 1, 1989. This version is supported by AISC Steel Construction Manual 9th edition. The check covers design/utilisation of members according to the provisions for Allowable Stress Design and Plastic Design (ASD).
EUROCODE onshore standard	EUROCODE 3 – Onshore structures
EUROCODES BUILDING THE FUTURE	 Tubular and non-tubular: EUROCODE 3, EN 1993 Part 1-1: General rules and rules for buildings. It is also possible to select the preferences according to the Norwegian and Danish National Annexes
Danish onshore and offshore standard	DANISH STANDARD 412 / 449 – Onshore and offshore structures • Tubular profiles only in both DS 412 and DS 449
DANSK STANDARD DANISH STANDARDS	

Plate code checking – requires extension CCPL

FEATURE	DESCRIPTION
Code check analysis	Yield and buckling assessment of cargo hold/partial ship structural and local structural strength analysis models according to common rule sets.
Code checking model	The capacity model is generated in GeniE.
Supported standards	 DNV GL 1A ship rules DNV GL Offshore rules CSR BC&OT (Bulk Carrier and Oil Tanker) Legacy rules: CSR Bulk: Common Structural Rules for Bulk Carriers, IACS, January 2006 CSR Tank – July 2008: Common Structural Rules for Double Hull Oil Tankers with Length 150 Metres and Above, IACS, July 2008
Redesign	The user may add local details and edit the code checking models. User can run quick redesign buckling analysis of selected panels in standalone mode of both CFM and PULS tool. This requires interaction and installation of Nauticus Hull.
Result presentation	The code check results may be presented graphically and in tables.

Import and export data in GeniE

FEATURE	DESCRIPTION
Section library	GeniE includes section libraries for the AISC, Euronorm and Norwegian and the British Standards. There are also several hull specific profiles for angle, bulb, flatbar and tbar. Users may create their own libraries for sharing and re-use.
Material library	GeniE comes with a material library consisting of about 70 material types. Users may also create their own libraries.
GeniE GNX and XML files	The GNX file is GeniE's program-version-independent database and may be imported and exported. The XML file is a subset of the GNX file (without mesh) and may also be exported and imported. The XML file may be used to merge different models.
GeniE JS file	The JavaScript based js file is a log of all user commands. It can be edited and used as input. Utilizing the power of the JavaScript the js file can be used for parametric modelling.
GeniE condensed JS file	A condensed js file may be exported. This file will recreate the model. The exported js file is intended for use in jacket and topside modelling as it does not cover curved surfaces or punched plates/surfaces.
<u>Sesam Interface</u>	Both the T#.FEM and the R#.SIN files (# is a number) may be exported and imported. This is relevant for analyses is not controlled by GeniE. Note that a curved surface is represented by facetted elements in a FEM file and will be imported as such.
Rule loads	Rule loads from Nauticus Hull may be imported.
Wajac.inp Wajac analysis control (input) file	GeniE creates a Wajac.inp file for use by Wajac. GeniE may also import data from a Wajac.inp file.
Gensod.inp Gensod input file	GeniE creates a Gensod.inp file for use by the pile-soil analysis. GeniE may also import data from a Gensod.inp file.
Usfos files	A model including mesh, loads and relevant environmental data may be exported to Usfos input files.

For import and export towards external software and formats see section <u>Import and export features of</u> <u>Sesam</u>.

Hydrod Hydrodynamic and Hydrostatic Analysis

Last revised: April 6, 2022. Describing versions 4.10 (32-bit) and 6.1 (64-bit).

The features of HydroD are organised in sections:

- General features
- Features for hydrostatic and stability analysis (version 6.1)
- Features for hydrodynamic analysis (Wadam and Wasim) (version 6.1/4.10)

As concerns hydrodynamics, the environment is modelled in HydroD while the hydrodynamic analysis is performed by running <u>Wadam</u> (linear frequency domain theory) or <u>Wasim</u> (non-linear time domain theory) in the background. The panel model is normally created in <u>GeniE</u> but will in certain cases be created in HydroD. HydroD provides analysis workflows for execution of Wadam and Wasim. Multiple floating equilibrium positions can be computed depending on mass and compartment filling.

FEATURES OF HYDROD

General features

Features for hydrostatic and stability analysis

Hydrostatic and stability computations may be run for both intact and damage conditions. HydroD will compute the draught and heel/trim angles to ensure equilibrium. Compartments may be flooded or balanced by HydroD. A wind heeling moment, user defined or calculated by HydroD, may be included.

FEATURE	DESCRIPTION
Hydrostatic data	 Hydrostatic data are computed: Displaced volume Mass with and without compartment fluid Centre of gravity and centre of buoyancy Centre of flotation Metacentre Trim moment Compartment information
Compartments	 Compartments are employed in hydrostatic and stability computations The free surface inside compartments is always horizontal The free surface in damaged compartments is always at the free surface level. HydroD may calculate the filling ratio of compartments necessary to obtain equilibrium of analytic and business.
	 gravity and buoyancy forces. HydroD computes the GZ curve for the structure (with and without the influence of deck compartments for offshore structures). The GZ curve is displayed The shortest distance between a flooding opening and the sea surface is displayed Zero crossings of the GZ-curve are reported Zero crossings of the lowest flooding opening are reported Change in trim and waterline is reported at each heel angle Integrals of the GZ-curve are reported

Features for hydrodynamic analysis (Wadam and Wasim)

The hydrodynamic analysis is performed by the programs Wadam and Wasim.

Wadam uses the Morison equation and first- and second-order 3D potential theory for the wave load calculations. The incident wave is an Airy wave and the analysis is performed in the frequency domain.

Wasim uses the Morison equation and solves the 3D diffraction/radiation problem by a Rankine panel method. The incident wave is an Airy, Stream Function or Stokes 5th wave and the analysis is performed in the time domain.

Unless otherwise stated, the features below are supported by both HydroD 6.0 and 4.10. Execution of Wasim is only supported by HydroD 4.10.

FEATURE	DESCRIPTION
Panel and dipole model	The panel model may include a combination of panels and dipole elements. Dipole elements are identified by sets.
Compartments	 Define fluids and filling fractions for the compartments. Define how the compartments are to be included in the hydrodynamic analysis. Full hydrodynamic solver for the internal fluid Quasi-static method Specify compartment content or ballast compartments to achieve required equilibrium. Compartments may include dipole elements.

Morison model	A Morison model can be included in addition to a panel model to handle slender members
	 Structural parts not included in the panel model (e.g. braces) where all loads are computed from Morison's equation Structural parts also included in the panel model (e.g. legs and pontoons) to get the combined effect of radiation/diffraction and viscous drag
Load cross sections	Define cut planes for computation of section loads
	Individual planes
	Sequence of planes
	• Normal to x-, y- or z-axis
Multi-body model	Create a multi-body model. The model can include
	different bodies or multiple occurrences of the same body, possibly with different loading conditions.

Sima MARINE OPERATIONS AND MOORING ANALYSES

Last revised: March 1, 2022. Describing version 4.1-02 (64-bit).

Sima is a complete tool for simulation of marine operations, mooring analyses and floating offshore wind turbines (FOWT), from modelling to results presentation. Programs for dynamic analysis are run in the background under control of Sima. Both 3D and 2D graphics make understanding the results fast and intuitive.

FEATURES OF SIMA

FEATURE	DESCRIPTION
GUI for <u>Simo</u> , <u>Riflex</u> and <u>Vivana</u> Select object to create P Hydrodynamics P Post processor P RIFLEX RIFLEX RIFLEX Coupled P Report SIMA SIMO WindTurbine Workflow < <u>Back</u> <u>Next</u> <u>Finish</u> (Sima supports various types of analysis. Sima is used as the general GUI and platform for various calculation programs such as Simo, Riflex and Vivana.
Locations and environments	Environment modelling includes:
Jonswap Spectrum	Current and wind profiles
	Wave and wind spectra
00	Seafloor properties (stiffness, friction)
S(1) S(1) S(1) S(1) S(1) S(1) S(1) S(1)	 Locations (site specific data such as water depth, gravity, water density, seabed etc.)
0 5 10 15 20 25 30 35 40	Regular time conditions including current
Wave Period T	 Irregular time conditions including wind data, wind generated wave data, swell and current
	Scatter diagrams

/ultiple analyses						In addition to a single condition a condition set and				
▼ Configure run variables						condition space can be specified to define multiple				
Defin	ne the variable val	ues for ea	ch run. Yo	ou can not ch	oose from the	analyses and run them in parallel.				
	dir_wave	Hs	Тр	V_wind	V_curr	By use of workflows (see details later in this				
1	-150.000	12.900	15.000	28.500	0.800	document) the user can separate the				
2	180.000	4.600	11.900	26.000	1.300	nextpressing from the simulations, so that the				
3	150.000	4.000	10.000	17.000	1.300	posiprocessing from the simulations, so that the				
4	120.000	4.400	11.800	22.000	1.300	simulations do not have to be rerun if the				
5	90.000	4.900	11.100	26.000	0.980	postprocessing is modified.				
6	60.000	8.200	12.200	36.000	1.650					
7	30.000	12.000	14.900	34,500	1.680					
8	0.000	11,900	15,800	30,500	1.830					
0	-30,000	12 000	15 100	28.000	1 680					
10	-60.000	13 300	15,000	27 500	1 680					
11	-00.000	12 900	15 900	27.000	1 220					
11	120,000	12,000	15,000	22,000	0.910					
12	-120.000	15,500	15,400	52.000	0.010					
0	• • •									
ilt-ir	n postproce	essor				The built-in post-processor includes different filters				
			٩. (ə. 🜈 🖑 🔓		and input/output control. Customized plots can also				
😳 Palette D					⊳	be defined. Postprocessing can be part of				
🕞 Tools 👳					0	workflows.				
	\rightarrow Connection									
	🗁 Aritmethic									
	➢ Statistics									
	🕞 Filtering									
	🕞 Spectral analysi	is								
1	🕞 Input/output				\$0					
-	C Input									
	🐳 Plot									
1	📑 File Output									
1	🕞 Fatigue				\$0					
	𝕶 _a Axial stress									
	🚥 Fatigue									
1	Simplified St	ress Fatigu	le							
1										
1										
-										
	C Other									
_ <u>_</u>	_									

Sesam Wind Manager

TIME DOMAIN ANALYSIS OF OFFSHORE WIND TURBINE SUPPORT STRUCTURES

Last revised: June 16, 2021. Describing version 5.2 (64-bit).

Sesam Wind Manager is a tool for time domain fatigue and ultimate strength analysis of offshore frame structures subjected to wave and wind turbine interface loads or displacements (and optionally seismic loading). Examples of structures are jackets, tripods and monopiles. It is typically used for fixed offshore wind turbine support structures.

💹 Se	Sesam Wind Manager V5.2.1.367 - 🛛 🗸 🕹																												
Eile (onversions	<u>Options</u>	<u>View</u> <u>H</u> elp																										
Cla			Waye/Wind				orting		I e D	ooult	Pope	rtina																	
GIU			Wave/Willd		FL3 Kest	in Kep	Jiung		Land	ssuit	Kepu	nung																	
		\approx							5					-			3	10		\sim									
~	Selection			alucio 4 D	ant Bracaccine) 🕨 S	tart Processi	ing In I	Parallel	11-	Super	element	t	Broood			🗵			<u> </u>	Y	E ilters	(showin	g all)					
:		1. Wave Lu	aus 2. Internace Ebaus 3. Structural Ana	siysis 4. F	Ust-Processing								Joroh	FIUCES	sing c	Jean O	p Folder	S DOWN	iluau c	Sonnect.	· ·								
	Name	Direct	Interface	Seismic	Seismic	Rotate	(Wind	(Yaw	(Wind	(Sea	Wave	Depth	Wave	Hs	Tz	Peak	Wave	Constr.	Constr.	Constr.	Current	f Env.	f Grav.	f Buo.	Start	Stop	Occ./	Progress	Status
		Results	Load File	ACC. File	Disp. File	Int. Load	Speed)	Error)	Dir.)	State)	File#	+/-	Dir.			Enn.	Seed	Реакт	Реак н	Реакт	ID .						Prob.		
V	dic12a-a1		Member26End2-dic12a-a1-parked.wind			0	4	352	352	NCC	0	0	352	4.4	4.10	1	1				0	1	1	1	-		00.07		_
V	dic12a-01		Member26End2.dlc12a.c1.narked.wind			0	4	8	8	NSS	0	0	8	1.1	4.10		1				0	1	1	1	1	0	66.67	-	
	dic12b-a1		Member26End2-dic12b-a1-parked wind			0	6	352	352	NSS	0	0	352	1.18	4.07	1	1				0	1	1	1	1	0	58.33		
	dic12b-b1		Member26End2.dlc12b.b1-parked wind			0	6	0	0	NSS	0	0	0	1.18	4.07	1	1				0	1	1	1	1	ő	58.33		
	dic12b-c1		Member26End2-dlc12b-c1-parked wind			0	6	8	8	NSS	0	0	8	1.18	4.07	1	1				0	1	1	1	1	0	58.33		
	dic12c-a1		Member26End2-dlc12c-a1-parked wind			0	8	352	352	NSS	0	0	352	1.31	4.01	1	1				0	1	1	1	1	0	55.5	1	
	dic12c-b1		Member26End2-dlc12c-b1-parked wind			0	8	0	0	NSS	0	0	0	1.31	4.01	1	1				0	1	1	1	1	0	55.5	1	
	dic12c-c1		Member26End2-dlc12c-c1-parked.wind			0	8	8	8	NSS	0	0	8	1.31	4.01	1	1				0	1	1	1	1	0	55.5	1	
-	dlc12d-a1		Member26End2-dlc12d-a1-parked.wind			0	10	352	352	NSS	0	0	352	1.48	4.06	1	1				0	1	1	1	1	0	50		
~	dic12d-b1		Member26End2-dlc12d-b1-parked.wind			0	10	0	0	NSS	0	0	0	1.48	4.06	1	1				0	1	1	1	1	0	50	1	
-	dlc12d-c1		Member26End2-dlc12d-c1-parked.wind			0	10	8	8	NSS	0	0	8	1.48	4.06	1	1				0	1	1	1	1	0	50	1	
1	dic12e-a1		Member26End2-dlc12e-a1-parked.wind			0	12	352	352	NSS	0	0	352	1.7	4.16	1	1				0	1	1	1	1	0	41.67	1	
-	dlc12e-b1		Member26End2-dlc12e-b1-parked.wind			0	12	0	0	NSS	0	0	0	1.7	4.16	1	1				0	1	1	1	1	0	41.67	1	
-	dic12e-c1		Member26End2-dlc12e-c1-parked.wind			0	12	8	8	NSS	0	0	8	1.7	4.16	1	1				0	1	1	1	1	0	41.67		
✓	dlc12f-a1		Member26End2-dlc12f-a1-parked.wind			0	14	352	352	NSS	0	0	352	1.91	4.29	1	1				0	1	1	1	1	0	33.33	1	
~	dlc12f-b1		Member26End2-dlc12f-b1-parked.wind			0	14	0	0	NSS	0	0	0	1.91	4.29	1	1				0	1	1	1	1	0	33.33		
✓	dlc12f-c1		Member26End2-dlc12f-c1-parked.wind			0	14	8	8	NSS	0	0	8	1.91	4.29	1	1				0	1	1	1	1	0	33.33		
 Image: A start of the start of	dlc12g-a1		Member26End2-dlc12g-a1-parked.wind			0	16	352	352	NSS	0	0	352	2.19	4.5	1	1				0	1	1	1	1	0	26.67		
~	dlc12g-b1		Member26End2-dlc12g-b1-parked.wind			0	16	0	0	NSS	0	0	0	2.19	4.5	1	1				0	1	1	1	1	0	26.67		
~	dic12g-c1		Member26End2-dlc12g-c1-parked.wind			0	16	8	8	NSS	0	0	8	2.19	4.5	1	1				0	1	1	1	1	0	26.67		
~	dlc12h-a1		Member26End2-dlc12h-a1-parked.wind			0	18	352	352	NSS	0	0	352	2.47	4.74	1	1				0	1	1	1	1	0	21.67		
	dic12h-b1		Member26End2-dlc12h-b1-parked.wind			0	18	0	0	NSS	0	0	0	2.47	4.74	1	1				0	1	1	1	1	0	21.67		
	dic12h-c1		Member26End2-dlc12h-c1-parked.wind			0	18	8	8	NSS	0	0	8	2.47	4./4	1	1				0	1	1	1	1	0	21.67		
V	dic12i-a1		Member26End2-dic12I-a1-parked.wind			0	20	352	352	NSS	0	0	352	2.76	4.94	1	1				0	1	1	1	1	0	16.67		
V	010121-01		Member26End2-dic12I-b1-parked.wind			0	20	0	0	NSS	0	0	0	2.76	4,94	1	1				0	1	1	1	1	0	10.07		
	dic12i-c1		Member26End2-dic12i-c1-parked.wind			0	20	252	252	NEC	0	0	252	2.70	4.34						0	1					10.0/	-	
v 17	dic12j-a1		Member26End2 dic12i b1 parked wind			0	22	0	0	NCC	0	0	0	3.09	5.23	4					0	4	4	4	4		12.5	-	
	die12i.e1		Member26End2.dlc12i.c1.narked.wind			0	22	8	8	NSS	0	0	8	3.09	5.23	4	4				0	1	1	4	1	0	12.5	-	
	dic12k-a1		Member26End2-dlc12k-a1-parked wind			0	24	352	352	NSS	0	0	352	3.42	5 52	1	1				0	1	1	1	1	0	8.33	-	
	dic12k-b1		Member26End2-dlc12k-b1-parked.wind			0	24	0	0	NSS	0	0	0	3.42	5.52	1	1				0	1	1	1	1	0	8.33	1	
	dlc12k-c1		Member26End2-dlc12k-c1-parked.wind			0	24	8	8	NSS	0	0	8	3.42	5.52	1	1				0	1	1	1	1	0	8.33	1	
-	dic64a-a1		Member26End2-dlc64a-a1-parked.wind			0	2	352	352	NSS	0	0	352	1.07	4.26	1	1				0	1	1	1	1	0	70	1	
-	dlc64a-b1		Member26End2-dlc64a-b1-parked.wind			0	2	0	0	NSS	0	0	0	1.07	4.26	1	1				0	1	1	1	1	0	70	1	
-	dic64a-c1		Member26End2-dlc64a-c1-parked.wind			0	2	8	8	NSS	0	0	8	1.07	4.26	1	1				0	1	1	1	1	0	70		
Depth	+/- Range: 0	m to 0m I f	Depth Range: 40m to 40m																										_
Selecte	Jugar - Change Min Konn Loopan L																												
		-																											
	09:54:49:42	3 Finished	updating status of 252 load cases.																										1
	09:54:42:93	5 Updating	g status of 252 load cases.																										
	09:54:42:58	4 Opening	workspace:	1000	C. Incertify	and the second	and the second		11.10	100	100		100																
	09:53:21:72	8 I Started	Sesam Wind Manager V5 2 1 367																										~

Sesam Wind Manager user interface – design load cases table

Superelement approach – received time series of wind turbine loads or displacements are applied at interface point and combined with wave (and seismic) loads in Sesam.

Integrated approach – full stress history of support structure is converted into Sesam's results file format for post-processing.

FEATURES OF SESAM WIND MANAGER

FEATURE	DESCRIPTION
Design load cases	The program is developed with the requirements of IEC61400-3, DNVGL-ST-0126, DNVGL-ST-0437 and DNVGL-RP-C203 in mind. All design load cases (DLCs) can be set up according to their wind and sea state combinations, after which the total fatigue damage for each hotspot on each beam is summed and reported for the included DLCs, taking into account the relative occurrence of each DLC over the lifetime. Similarly, ultimate strength code checks can be performed.
Sesam programs included	Wajac is used for the wave load computation. Wind turbine interface loads (or displacements) can be included in Sesam Wind Manager via a simple text file with load (or displacement) per time step. <u>Sestra</u> is used for structural analysis and optionally <u>Splice</u> for non-linear pile-soil analysis. <u>Framework</u> is used as a postprocessing tool for fatigue and/or ultimate strength analysis.
Fatigue analysis in time domain stress time t	Fatigue analysis for all design load cases can be performed using <u>Framework</u> . If desired, multiple sets of SN curves can be applied in the analysis, e.g. taking into account changes in corrosion protection over the structure's lifetime. Results are summed over all fatigue load cases for each hotspot in each member. Detailed results are available per design load case. Using <u>Sesam Insight</u> it is possible to visualize and collaborate on the results.

Integrated analysis Sesam GeniE Modelling	The modelling of the jacket and tower is done in Sesam. The model is then imported/converted into Bladed format and linked to a wind turbine model in Bladed. A structural analysis is then performed in Bladed, after which time series of the resulting forces and moments are extracted for every beam in the structure. These results are then converted into Sesam format. Fatigue and extreme analyses are subsequently performed in Sesam.
Import and export functionalities for data exchange Select Bladed File Convert to Sesam Format	Converters exist for load import from Bladed, BHawC, VTS/Flex5 and HawC2. In addition, time series of wind turbine loads from any 3 rd party tool can easily be used in Sesam by outputting the loads as a simple text file with columns of time and loads in 6 degrees of freedom. Besides this, export functionalities exist to Bladed (integrated model, or superelement + loads), BHawC (superelement + loads) and VTS/Flex5 (superelement + loads).
Parallel computing 1 Immediate for any computed f	Sesam Wind Manager offers parallel computing, thereby significantly speeding up running a large set of design load cases (DLCs).
Cloud computing	In addition to local parallel computing, Sesam Wind Manager is cloud-enabled. This enables analysing all DLCs in the Sesam Cloud allowing fast and simultaneous running of many DLCs. The status of the analyses can be monitored in the application as well as online. Results are available online and are downloaded automatically at run completion if desired. Using Sesam Cloud, multiple design iterations can be performed in a single day, thereby allowing for further model optimization and cost reduction.

verified. Verification reports describing the interfaces and verifying correct implementation are available on request.	Verification reports	The interfaces between Sesam and wind turbine load calculation tools Bladed and BHawC have been
	<section-header><text><text><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></text></text></section-header>	load calculation tools Bladed and BHawC have been verified. Verification reports describing the interfaces and verifying correct implementation are available on request.

Presel PREPROCESSOR FOR ASSEMBLING SUPERELEMENTS

Last revised: August 22, 2017. Describing version 7.5-01.

Presel is Sesam's tool for assembling superelements to form the complete model. A superelement is basically a finite element (FE) model of a part of the complete structure. The Sesam preprocessors <u>GeniE</u> and Patran-Pre are used for creating first level superelements, i.e. part models comprised of finite elements like beams, shells, etc. Presel puts these parts together to form superelement assemblies. First level superelements are typically assembled to form second level superelement assemblies, these are in turn assembled to form third level superelement assemblies, and so on until the complete model — the top level superelement assembly — is formed.

FEATURES OF PRESEL

Assembling a superelement consists of two steps:

- Assemble superelements (assemble geometry)
- Assemble or combine loads

These two steps are repeated for all higher level (from 2 and up) superelements created in Presel.

Boundary conditions	Boundary conditions may be added to higher level superelements (from 2 nd level and up). 1 st level superelements may not be modified in Presel: • Fixed • Prescribed • Super
Load combination Sup. 7 Load 5 Sup. 4 Sup. 5 Sup. 6 Load 1 Load 3 Load 4	 The load combination may be done in two ways: Manually by specifying all loads of included superelements contributing to the combination A group of loads combined one-to-one into a group of load combinations. This is useful for loads created by <u>Wajac</u> and <u>Wadam</u>.
Loads	Nodal loads may be added to any higher level superelement.
Sets	Sets of nodes may be defined. These are available in the postprocessors (<u>Framework</u> , <u>Stofat</u> and <u>Xtract</u>).
Node triplet	Nodes are referred to by so-called triplets, i.e. three numbers being the superelement number, the superelement index and the node number. The superelement index is a number starting at 1 and incremented each time the same superelement is included.
Label	Node symbols and node numbers may be added to the display: • Boundary conditions
	Coupled nodes (where superelements join)
	Non-coupled nodes
	 Node symbols (yellow diamond for free, blue octagon for super)
	Node numbersOrigin symbol
Linear dependency	Linear dependencies by making one or more degrees of freedom (dofs) linearly dependent on one or more other (independent) dofs.

Plot CGM →	 The display may be sent to a file in alternative graphics formats: CGM-Binary (Computer Graphics Metafile which may be imported into MS Office)
	Postscript
	Or the display may be sent directly to an on-line printer.

Submod

DISPLACEMENTS FROM GLOBAL MODEL TO SUB-MODEL

Last revised: January 15, 2020. Describing version 3.3-00 (64-bit).

The sub-modelling technique allows a part of a (global) model to be re-analysed to produce more accurate results locally. The procedure is:

- Perform a (global) analysis of the structure.
- Create a sub-model with refined mesh of a region of interest.
- Fetch displacements from the global model and transfer these to the boundary of the sub-model. This is the task of Submod.
- Analyse the sub-model using the interpolated displacements as prescribed (forced) displacements and obtain a more accurate solution for the region.

To take advantage of the sub-modelling technique no preparations are required in the global analysis. Doing a sub-modelling analysis is an option after having performed an analysis of the whole structure. If the global results reveal a need for detailed analyses in certain areas, then the sub-modelling technique is an appealing alternative to a new global analysis.

Minor changes to the geometry of the sub-model may be done to study the effect of alternative designs or to model more accurately details that were neglected in the global analysis. This can only be done provided the changes within the sub-model region have negligible effects on the global solution.

Both the global model and sub-model may be superelement models.

For a plate/shell fatigue analysis a sub-modelling analysis is close to mandatory as the requirement to mesh density in a fatigue analysis cannot normally be met in a global analysis.

FEATURES OF SUBMOD

Wadam WAVE ANALYSIS BY DIFFRACTION AND MORISON THEORY

Last revised: April 6, 2022. Describing version 10.1 (64-bit).

The description of Wadam is organised in sections:

- Model types
- Analyses
- Transfer of load to structural analysis
- Theory and formulation

Wadam is an analysis program for calculation of wave-structure interaction for fixed and floating structures of arbitrary shape, e.g. semi-submersible platforms, tension-leg platforms, gravity-base structures and ship hulls. Wadam performs hydrodynamic analysis in the frequency domain. The program is based on the radiation diffraction methodology for large volume structures. For slender structures the Morison formulation is used to account for the drag effects of such structures. Wadam can handle a very small forward speed/current. Wadam uses input data generated by <u>HydroD</u>.

The Wadam results are presented directly as complex transfer functions. The loads on the finite element model can also be given in this way, but they may alternatively be converted to deterministic results for a specified sequence of phase angles of the incident wave. For fixed structures Morison's equation may also be used with deterministic output option to calculate drag forces due to time independent current.

The same analysis model may be applied to both the calculation of global responses in Wadam and the subsequent structural analysis. For shell and solid element models Wadam also provides automatic mapping of pressure loads from a panel model to a differently meshed structural finite element model.

FEATURES OF WADAM

The features of Wadam are summarised below.

Model types

FEATURE	DESCRIPTION
Model types	 There are three main model types: Hydro model used to calculate hydrodynamic forces Structural model onto which hydrodynamic and hydrostatic loads are transferred Mass model for floating structures being either a model or a mass matrix
Hydro models Hydro model Panel model Morison model Composite model	 The hydro model may be: Panel model for potential theory computations Morison model for computation by the Morison equation Composite model being a combination of a panel and a Morison model for use when potential theory and the Morison equation are applied for different parts of the hydro model
Mass model	 The mass can be provided in any of the two forms Global mass data A file describing the mass distribution A description of the mass distribution is needed for computation of sectional loads.
Panel model y_{inp} y_{inp} y_{inp} y_{inp} y_{inp} y_{inp} y_{inp} y_{inp} x_{inp} x_{inp} x_{inp} x_{inp} x_{inp} y_{inp} y_{inp} x_{inp} y_{inp} x_{inp} y_{inp}	The panel model may be a single superelement or a hierarchy of superelements. It may describe either the entire wet surface or take advantage of one or two planes of symmetry.

Multi-body

Hydrodynamic and mechanical interaction between several structures can be analysed. The hydrodynamic interaction is computed from the potential theory as applied for a single structure with the extension that the number of degrees of freedom is increased from 6 to 6N where N is the number of structures. A multi-body model can contain both fixed and floating bodies.

Analyses

FEATURE	DESCRIPTION					
Forward speed/Wave current interaction	The effect of a small current or forward speed can be accounted for. The speed limit is case dependent, but is typically in the range 1-2 m/s.					
	The current can be in any direction.					
Hydrostatic	Calculation of hydrostatic data and inertia properties					
Global response	Global response is calculated including:					
	First-order wave excitation forces and moments					
	 Second-order wave excitation forces and moments (used to model springing effects, low frequency forces etc.) 					
	Hydrodynamic added mass and damping (including zero and infinite frequency)					
	 First- and second-order rigid body motions, the user may specify which modes of motion are free 					
	Sectional forces and moments					
	Steady drift forces and moments					
A	Wave drift damping coefficients					
	 Sectional load components (mass, added mass, damping and excitation forces) 					
	Panel pressures					
	• First order fluid particle kinematics (for gap calculations and free surface animation)					
	Second-order free surface elevations					

Transfer of load to structural analysis

FEATURE	DESCRIPTION
Load transfer Load transfer Load transfer Panel mesh FE mesh	 Automatic load transfer to a finite element model for subsequent structural analysis including: Inertia loads Line loads on beam elements from Morison model Point loads from pressure areas, anchor elements etc. from Morison model Pressure loads on plate/shell/solid elements Internal tank pressure in compartments
Load transfer in frequency domain	The computed load transfer functions are mapped onto a finite element model. For the shell/solid part the mesh need not be the same as the mesh used in the hydrodynamic analysis (the panel model). For the beams the model must be identical in the hydrodynamic and structural analysis.
Deterministic load transfer	The loads may alternatively be extracted as real load cases at specified phase angles during the wave cycle. In this case a wave amplitude must also be specified and the load transfer function is multiplied with this wave amplitude. The loads will be used in a quasi-static structural analysis.

Theory and formulation

FEATURE	DESCRIPTION
Morison equation $F_{\text{Inertia}} = \rho \pi D^2/4 C_m a_n$ $F_{\text{Drag}} = \rho D/2 C_d v_n v_n $	The Morison equation is used for slender (beam) structures.
Potential theory Incoming wave Radiated and diffracted waves \leq	First- and second-order 3D potential theory is used for large volume structures. The solution is based on using the Green's function formulation.
The Morison equation and potential theory combined	The forces from Morison equation and potential theory are added when the structure comprises of both slender and large volume parts.
Removal of irregular frequencies	Irregular frequencies may be removed from the radiation-diffraction solution. This method is based on a modified integral equation obtained by including a panel model of the internal water plane.

Damping lids	The wave elevation in areas where resonance may happen can be controlled by including a damping lid on the free surface in those areas.
Tank pressures	Tank pressures may be computed Quasi-statically Dynamically
Roll damping	 Viscous roll damping included in different ways: By using the ITTC roll damping model By prescribing additional damping By using a Morison model
Additional damping and restoring	Additional damping and restoring matrices can be specified. This can be used for including damping or restoring from moorings and risers and/or viscous damping. Quadratic damping coefficients for all modes can also be given.
Pressure loads up to free surface	Panel pressures calculated by first-order potential theory may be extrapolate to the free surface. Correspondingly, dry elements below the still water level receive no loads. This is done by stretching pressures above the still water level. This option is only for deterministic load transfer.
Reduced pressure around the free surface	This is a recommended option for fatigue analysis and follows DNV GL Class note 30.7. The pressure is modified around the waterline. The method should only be applied on that part of the vessel which has vertical intersection with the free surface.

Wasim

LINEAR AND NON-LINEAR SEA-KEEPING AND WAVE LOADS ON VESSELS WITH FORWARD SPEED

Last revised: April 6, 2022. Describing version 6.3 (64-bit).

The description of Wasim is organised in sections:

- Model types
- Analyses
- Transfer of load to structural analysis
- Theory and formulation

Wasim is an analysis program for calculation of wave-structure interaction for fixed and floating structures. Wasim performs hydrodynamic analysis in time domain, but also includes an option for conversion to frequency domain. The program is based on the radiation diffraction methodology for large volume structures. For slender structures the Morison formulation is used to account for the drag effects of such structures. Wasim can handle any forward speed from zero to very high as long as the vessel is not planing. Wasim uses input data generated by <u>HydroD</u>. The forward speed problem may alternatively be regarded as a wave/current interaction problem with the forward speed replaced by a uniform current in the opposite direction.

The same analysis model may be applied to both the calculation of global responses in Wasim and the subsequent structural analysis. For shell and solid element models Wasim also provides automatic mapping of pressure loads from a panel model to a differently meshed structural finite element model.

The 3D potential theory in Wasim is based on a Rankine formulation. This means that both the hull and free surface must be meshed. HydroD has tools for meshing the free surface.

FEATURES OF WASIM

Model types

Analyses

FEATURE	DESCRIPTION
Forward speed/Wave current interaction	Wasim can handle any value of forward speed/current as long as the vessel is not planing. The current is in positive or negative x-direction.
Calm sea analysis	Computation of the static loads on the hull. If there is a forward speed the loads due to that will be included.
Global response	 Global response is calculated including: Wave excitation forces and moments Hydrodynamic added mass and damping Rigid body motions Sectional forces and moments Steady horizontal drift forces and moments. For forward speed, the x-component of the drift force is the added resistance. Added resistance can be computed for single- and multi-hull vessels. Panel pressures Fluid particle kinematics and wave elevation (for gap calculations and free surface animation) Relative motion
Wave models	 The incoming wave is described by: A set of Airy waves A single harmonic Stokes 5th order wave A single harmonic stream function wave Precalculated wave kinematics in SWD (Spectral Wave Data) format The program Wamod can be used to precalculate wave kinematics and output in SWD format.

Transfer of load to structural analysis

FEATURE	DESCRIPTION
Load transfer Load transfer Load transfer Panel mesh FE mesh	 Automatic load transfer to a finite element model for subsequent structural analysis including: Inertia loads Line loads on beam elements from Morison model Point loads from pressure areas, anchor elements etc. from Morison model Pressure loads on plate/shell/solid elements Internal tank pressure in compartments
Load transfer in frequency domain	The time histories of the loads are converted into frequency domain by Fourier analysis and then applied to the finite element model to be used in a quasi-static or frequency domain structural analysis.
Load transfer in time domain	A selected part of the time histories is applied as time domain loads on the finite element model to be used in a time domain (dynamic) structural analysis. Hydrostatic pressure can be removed.
Snapshot loads	Loads at selected points in time are applied as static loads on the finite element model to be used in a quasi-static structural analysis. Hydrostatic pressure can be removed.
Interface to Sima	Prescribed wave elevation, motions and forces/moments may be imported from Sima.
Interface to Bladed	Prescribed wave elevation, motions and forces/moments may be imported from Bladed.

Theory and formulation

FEATURE	DESCRIPTION
Morison equation $F_{\text{Inertia}} = \rho \pi D^2/4 C_m a_n$ $F_{\text{Drag}} = \rho D/2 C_d v_n v_n $	The Morison equation is used for slender (beam) structures.
Potential theory Incoming wave Radiated and diffracted waves \leq	3D potential theory is used for large volume structures. The solution is based on using the Rankine formulation.
The Morison equation and potential theory combined	The forces from Morison equation and potential theory are added when the structure comprises of both slender and large volume parts.
Non-linear effects	 The following non-linear effects can be included in the analysis: Hydrostatic and Froude-Krylov pressure on exact wetted surface Exact treatment of inertia and gravity Quadratic terms in Bernoulli equation Quadratic roll and pitch damping Stokes 5th-order or Stream function wave
Tank pressures	Tank pressures may be computed using the quasi- static approximation.

Viscous damping	Viscous damping in roll and pitch can be modelled by prescribing a linear and a quadratic damping coefficient. Alternatively, the effect can be included by using a
Additional damping and restoring	Additional damping and restoring matrices can be specified. This can be used for including damping or restoring from moorings and risers and/or viscous damping.
Pressure loads up to free surface	In a non-linear analysis loads are computed on the exact wetted surface.
Reduced pressure around the free surface	This is a recommended option for fatigue analysis and follows DNV GL Class note 30.7. The pressure is modified around the waterline. The method should only be applied on that part of the vessel which has vertical intersection with the free surface.
Time series input Time series input $ \begin{array}{c} $	 Wasim can read and utilize any combination of the following time series inputs: Wave elevation at a prescribed point Motion, velocity and acceleration of the structure Forces (and optionally also moments) acting in specified points
User defined dll	A user defined dll can be used. The dll takes motions as input and forces and moments as output. This can be used e.g. to model motion control systems, or additional structural parts that will give loading to the model based on its motions (e.g. a wind turbine, wave energy converter etc.).

Wamod

COMPUTATION OF WAVE KINEMATICS IN SPACE AND TIME

Last revised: June 21, 2021. Describing version 2.0 (64-bit).

Wamod is a tool for pre-computing wave kinematics in space and time. The results are written in Spectral Wave Data (SWD) format. The SWD data may be used by Wasim.

Wamod contains a number of different wave models, both for random seas and regular waves.

FEATURES OF WAMOD

FEATURE	DESCRIPTION
Higher Order Spectral Method (HOSM)	Linear and non-linear realization of random seas. Supported wave spectra are JONSWAP and Torsethaugen. The sea-state may be a combination of two spectra from different directions. A first order HOSM model corresponds to a linear realization of the sea-state (Airy waves).
Breaking wave model	A modification of the HOSM model to account for the possibility of energy dissipation by wave breaking.
Second-order random sea Linear and 2nd order Wave elevation AMP at original/SUM/DIFF omegas Linear and 2nd order Wave elevation AMP at original/SUM/DIFF omegas Linear and 2nd order Wave elevation AMP at original/SUM/DIFF omegas use of the second seco	An analytical consistent second-order model of a random sea. This is slightly different from a second order HOSM model that also contains some higher order components.
Regular wave models	 5th order Stokes wave Stream function wave – Fenton's formulation

Waveship SEA-KEEPING OF SLENDER VESSELS

Last revised: August 22, 2017. Describing version 6.2-05.

Waveship is a frequency domain hydrodynamic analysis program for calculation of wave loading and response for ships and other slender marine structures, with and without forward speed. The Waveship results are presented directly as complex transfer functions.

Waveship is using strip theory. This is in many cases a good approximation for obtaining global responses but is less reliable for local responses (i.e. pressure distribution).

The most typical approximation of Waveship is to compute global results on slender structures at zero to moderate speed. When applicable these results can be obtained with a very small computational effort.

FEATURES OF WAVESHIP

FEATURE	DESCRIPTION
Strip model	The strip model is the basis for the hydrodynamic solver. A 2D problem is solved in the planes defined by each curve (yz-plane). The strip model covers one half of the vessel so only vessels with xz-symmetry can be analysed.
Mass model	 The mass can be provided in any of the two forms: Global mass data Sectional mass matrices Sectional mass matrices are needed for computation of sectional loads.
Mooring elements	A simplified model of moorings and risers can be given in the form of linear springs with pretension.
Forward speed	Waveship can handle moderate forward speeds. The results are best at zero speed and becomes gradually less reliable with increasing speed.
Global response	 Global response is calculated including: Wave excitation forces and moments Hydrodynamic added mass and damping Rigid body motions Mean drift force Sectional forces and moments Mean drift force and sectional loads are less reliable than the global quantities since it requires computation of the pressure distribution.

Load transfer	Automatic load transfer to a finite element model for subsequent structural analysis including:
	Inertia loads
	Pressure loads on plate/shell/solid elements
	The pressure loads may have significant uncertainty and should be used with care. Load transfer from Waveship is therefore in general only recommended for load transfer to the cargo in a transportation analysis, i.e. transfer only of inertia loads.
Tank pressures	Tank pressures may be computed using the quasi- static approximation.
Roll damping	Viscous roll damping from hull and bilge keel can be included by using the roll damping models of Tanaka and Kato.
Pressure loads up to free surface	Panel pressures calculated by first-order potential theory may be extrapolate to the free surface. Correspondingly, dry elements below the still water level receive no loads. This is done by stretching pressures above the still water level.

Wajac WAVE AND CURRENT LOADS ON FIXED RIGID FRAME STRUCTURES

Last revised: March 1, 2022. Describing version 7.8 (64-bit).

The description of Wajac is organised in sections:

- Types of analysis
- Details on certain features

Wajac calculates wind, wave and current loads on fixed and rigid frame structures. Typical examples of such structures are offshore jacket platforms and jack-up rigs. The loads are calculated according to Morison's equation (plus optionally MacCamy-Fuchs) in the time domain (deterministic), frequency domain or in a short-term time domain simulation. Loads are transferred to structural analysis in <u>Sestra</u> and statistical post-processing in <u>Postresp</u>.

FEATURES OF WAJAC

The features of Wajac are summarised below in sections:

- Types of analysis
- Details on certain features

Types of analysis

FEATURE	DESCRIPTION
Deterministic load calculation	Deterministic load calculation is performed in the time domain (wave stepping through structure) and is generally used for design purposes in an ultimate limit state analysis. Several wave theories are available including Stokes 5 th , Stream Function and Cnoidal. Multiple water depths may be specified. Such an analysis is the basis for:
	Static analysis in <u>Sestra</u>
	 Deterministic fatigue analysis (FLS) in <u>Framework</u>
	Code checking (ULS) in <u>GeniE</u>
	Print of transfer functions for base shear and overturning moment allows graphing in Excel.
Spectral (frequency domain) load calculation	This involves calculation of wave force transfer functions in the frequency domain. Such an analysis is the basis for:
	 Frequency domain dynamic or quasi-static analysis in <u>Sestra</u>
$+ + \uparrow^{1}$	 Stochastic (spectral) fatigue analysis (FLS) in <u>Framework</u>
	Print of transfer functions for base shear and overturning moment allows graphing in Excel.

Details on certain features

FEATURE	DESCRIPTION
Load calculation	All loads calculated by Wajac are based on Morison's equation: $F = \rho \prod D^2/4 C_m a_n + \rho D/2 C_d v_n v_n $
Hydrodynamic coefficients $F_{Inertia} = \rho \pi D^2/4 C_m a_n$ $F_{Drag} = \rho D/2 C_d v_n v_n $	 The hydrodynamic coefficients C_m (inertia) and C_d (drag) may be specified in alternative ways: Constant Different constant values to different parts of structure Function of diameter Function of roughness and Reynolds number Function of roughness and Keulegan-Carpenter number By API rule
Marine growth	 Marine growth may contribute to: Drag force Inertia force and added mass Weight and buoyancy

Installiac LAUNCHING AND UPENDING ANALYSIS

Last revised: August 22, 2017. Describing version 8.2-00.

Installjac simulates the installation launch and upending of a jacket. The program provides a comprehensive assessment of the hydrostatic and hydrodynamic properties of the jacket during the installation simulations.

FEATURES OF INSTALLJAC

FEATURE	DESCRIPTION
Launching from barge	The jacket launching from a single or multiple hinged barge may be simulated.
Free floating of the jacket and barge	Free floating of the jacket and barge after launching may be simulated.
Upending of jacket	The upending of the jacket may be done using cranes, hooks and member flooding.
Launch loads	The member launch loads for a jacket stress analysis may be generated.
Hydrodynamic forces on barge	The hydrodynamic and hydrostatic forces on a barge or multiple hinged barges may be modelled

Simo

Last revised: January 27, 2020. Describing version 4.16-02 (64-bit).

Simo is for simulation of motions and station-keeping behaviour of complex systems of floating vessels and suspended loads. Essential features are:

- Flexible modelling of multimode systems
- Non-linear time domain simulation of wave frequency as well as low frequency forces
- Environmental forces due to wind, waves and current
- Passive and active control forces
- Interactive or batch simulation

Simo is run from the Sima GUI.

FEATURES OF SIMO

FEATURE	DESCRIPTION
Running Simo	Simo can be run independently with DOS commands and batch files.
Time dependent mass	Time dependant mass can be directly defined in Simo, which is useful in upending analysis.
B Possible tank	It can also be used to simulate the ballasting tanks for ships or offshore platforms.
Morison equation for slender elements	Slender elements can be defined to capture the loads calculated with Morison equation.
(XREF, YREF, ZREF) YS (XEL1, YEL1, ZEL1)	As an additional modelling option, the user may specify depth dependent scaling of hydrodynamic coefficients for the slender structures.
Soil penetration S	Soil penetration parameters for friction model with soil fracture can be used to simulate suction piles of
CAREA BAREA SODENS FRICH FTIPDO FTIPUP	subsea manifolds.

Sestra COMPUTE STRUCTURAL RESPONSE TO STATIC AND DYNAMIC LOADING

Last revised: March 1, 2022. Describing versions 8.8-02 (64-bit) and 10.15 (64-bit).

The description of Sestra is organised in sections:

- Types of analysis
- Elements, properties and loads
- Equation solvers
- Additional features

Sestra is the static and dynamic structural analysis program of Sesam. It is based on the displacement formulation of the finite element method. In addition to linear structural analysis, gap/contact, tension/compression only, linear buckling, stress stiffening (P-delta) and inertia relief analyses may be performed.

Sestra exists in two versions: 8.8 and 10. The latter will by time completely replace the former. The few limitations of Sestra 10 necessitating use of Sestra 8.8 are listed in the Sestra 10 release note and user manual. The below presentation of features does not distinguish between the two versions.

FEATURES OF SESTRA

Types of analysis

The types of analysis illustrated and explained in the table below are:

- Linear static analysis
- Non-linear structure-pile-soil interaction analysis controlled from <u>Splice</u>
- Linear free vibration analysis
- Linear dynamic analysis in frequency as well as time domain
- Linear frequency domain static analysis
- Linear static analysis accounting for dynamic effects by way of 'equivalent static loads' (ESL)
- Gap/contact analysis
- Tension/compression only member analysis
- Linear buckling analysis
- Stress stiffening (P-delta) analysis
- Axi-symmetric analysis

FEATURE	DESCRIPTION
Linear static analysis	The loads are (more or less) constant and the structural response is linear. Linear response means that it is proportional to the load: Double the load and the displacements are doubled. Equation of equilibrium being solved: Kr = R K is stiffness matrix, r is displacement vector, R is load vector
Structure-pile-soil interaction	 Splice runs Sestra in the background to: Reduce the stiffness of and loads on the linear structure (e.g. jacket) to the pile heads (supernodes). To compute the displacements, forces and stresses throughout the model. See <u>Splice</u> for more details.

in question. ay also have a gap/contact condition al fixed object, e.g. the ground. inear problem that cannot be solved stra. Rather SestraGap is used. It is a ram solving the gap/contact problem running Sestra in the background. analysis is available only for static
rs may be defined as truss (no ess) of type "tension only" or only". Additionally to assigning such nembers, a Tension/Compression type ist be specified (from GeniE or Sesam inear problem that is solved by an edure.

A linear buckling analysis determines the scaling of a load required to reach linear buckling.
This is an automatic two step procedure:
 Static analysis to find forces and stresses. A geometric stiffness matrix K_g is computed based on these results.
 Solve eigenvalue problem: (K – λKg)Φ = 0 λ is eigenvalue or stability factor, Φ is buckling modes. Only the first buckling mode is of interest. Load times λ is the critical buckling load.
Second order (P- Δ) effects are not accounted for. This limitation plus the fact that structural imperfections may not be properly accounted for involves that a linear buckling analysis overestimates the real buckling load.
A stress stiffening analysis takes the stiffening effect of tension and softening effect of compression into
account when computing e.g. the free vibration of
This is an automatically performed two-step procedure:
A geometric stiffness matrix K ^g is computed based on these initial stresses. K ^g is added to the stiffness matrix K thereby adding/subtracting stiffness to the ordinary stiffness.
 A new analysis is done based on the updated stiffness matrix. This analysis may be a static, free vibration or forced response dynamic analysis.
A rotational symmetric model may be analysed as a
2D problem thereby reducing the size of the problem to a fraction compared to a full 3D analysis.

Elements, properties and loads

Presented below are essential features related to the types of analysis presented above.

Boundary conditions		The following boundary conditions may be given:
	Fixed	Fixed (at zero) displacements
	Prescribed	 Prescribed displacements (used by sub- modelling)
······································	Linearly coupled	 Multipoint constraints (or linear dependencies) Elastic support Super degree of freedom is considered a
	Elastic support	 Additional boundary conditions for dynamic analysis: Prescribed time dependent
	Supernode (also termed retained)	 displacements and accelerations Viscous support Initial displacements and velocities in forced response analysis
		Transformations of node coordinate system may be defined allowing for skew boundary conditions.
Hydrodynamic added mass		Hydrodynamic added mass may be computed for floating large volume structures such as ships and offshore platforms.
Loads		The following load types may be given:
	odal load ine load	 Nodal load (including moment) Line load Surface pressure Surface load in a component form (X, Y, Z)
s g g	urface pressure ravity	 Temperature Gravity General inertia load
	igid body acceleration pint load on 2 node beam	 Rigid body acceleration Point load or load linearly distributed over part of the element for 2-node beam elements

Equation solvers

Presented below are solvers related to the types of analysis presented above.

FEATURE	DESCRIPTION
FEATURE Superelement analysis Split into : 1. Helideck 2. Modules 3. Flare boom 4. Deck 5. Jacket 9 1 2 3 4 5 Superelement assembly	DESCRIPTION Sestra features a multilevel superelement technique applicable for static analysis. This technique involves splitting the structure to be analysed into part models, superelements, and assembling these to form the complete model. Not only Sestra but the whole Sesam suite of programs incorporates the superelement technique: • GeniE creates 1 st level superelements • Presel assembles superelements through any number of levels to form the complete model • Wajac and Wadam computes loads and motion for superelement assemblies • Sestra analyses superelement assemblies • Postprocessors (Xtract, Framework, Stofat, etc.) handle superelement assemblies Whereas the computer power and technology of today no longer makes the superelement technique a necessity it is still useful: • Different teams can work on different superelements • Previously analysed model may be added as a superelement to a new model • A huge results file for a very big model may be split thereby facilitating postprocessing work
	 Allows highly efficient non-linear analysis when the non-linearity is limited to regions, examples:
	 Structure-pile-soil analysis, Sestra for linear structure, <u>Splice</u> for non- linear pile-soil
	 Contact/gap analysis, Sestra for linear structure, SestraGap for non- linear contact/gap region

Additional features

Presented below are a few additional features.

Splice STRUCTURE-PILE-SOIL INTERACTION ANALYSIS

Last revised: January 19, 2021. Describing version 7.6-00 (64-bit).

Splice is a program for non-linear analysis of the structure-pile-soil interaction problem of typically a jacket supported by piles driven into the seabed. The programs Pilgen and Gensod belong to Splice, the former for pile modelling and the latter for generation of non-linear soil stiffnesses. Pilgen is, however, normally not used since the pile modelling is done as part of the jacket modelling in <u>GeniE</u>. The non-linear soil stiffnesses are generated by Gensod based on soil modelling performed in GeniE. While Splice analyses the non-linear pile-soil interaction it runs <u>Sestra</u> in the background for analysing the linear jacket.

FEATURES OF SPLICE

FEATURE	DESCRIPTION
Non-linear analysis Load Iterative solution Displacement	 Splice provides a fully non-linear analysis: Non-linear sand and clay layers Including past load displacement history Pile material non-linearities Pile second-order moments Pile-soil-pile interaction (group effect) Temperature effects (e.g. oil in conductors) Imposed soil displacements (mudslides, nearby structures, etc.) For each of several load combinations an iterative process solves the non-linear problem and computes displacements of nodes along the piles.
Structure-pile-soil interaction Gensod File created: GENSOD.SIF P-Y, T-Z, Q-Z curves (non-linear Stiffness and loads for whole structure: K and R Stiffness and loads reduced to supernodes: k and F Non-linear analysis computes displacements: r, Sestra Displacements computed for whole structure: r Results file R*.SIN Displacements r + stresses & forces	By running Sestra in the background the stiffness of and loads on the linear structure (e.g. jacket) are reduced to the pile heads (supernodes). These reduced stiffness and loads contribute to the non-linear stiffness of and loads on the pile-soil. Splice computes the pile displacements. By running Sestra once more in the background the displacements, forces and stresses throughout the model are computed by back-substitution.
Matrices for whole structure: K Stiffn. R Load Matrices for super- nodes: k Stiffn. F. Displ. F Load Soil layers Soil layers Super- nodes: R Q-Z	

Usfos NON-LINEAR STATIC AND DYNAMIC ANALYSIS OF SPACE FRAME STRUCTURES

Last revised: January 19, 2021. Describing version 8.9-01 (64-bit).

Usfos is used for ultimate strength, progressive collapse and accident analysis of space frame structures, e.g. jackets in intact and damaged conditions. Extreme and accidental scenarios like earthquake, explosion, fire, ship collision, dropped object etc. are analysed using Usfos.

ULS (ultimate limit state) analysis in Usfos is performed using a coarse beam and plate mesh equal to the one used in linear analysis. Linear analysis models may therefore be used in Usfos with little or no modifications. Yielding, plastic hinges, buckling, local buckling, joint yielding and fracture are accounted for using a single beam element between joints.

FEATURES OF USFOS

The analysis program Usfos comes with a front-end graphical user interface named Xact in which input specification and analysis control is done. The utility tool Struman for converting models from <u>GeniE</u>, SACS, STAAD and Abaqus is run from Xact. And the graphical presentation of results is done in Xact.

Usfos is interfaced with Fahts (Fire And Heat Transfer Simulations). Fahts has an interface to the CFD tool Kameleon FireEx KFX. Fahts prepares temperature data for structural response analysis in Usfos.

FEATURE	DESCRIPTION
Pushover analysis	A pushover analysis is carried out for a combination of static loads plus wave and wind loads. The finite element model may be imported from GeniE along with explicit loads or it may be modelled in Usfos via a text file. Wave loads and pile-soil data may be imported from <u>Wajac</u> and <u>Splice</u> or generated in Usfos. Initial imperfections may be defined according to various curves recommended by codes (standards) and by manual input data. The geometric stiffness matrix is updated after each load step based on the deflected nodal coordinates. Two surface plasticity models are used to simulate the material non- linearity. Joint checks according to API, ISO, NORSOK etc. are integrated parts of the analysis
Boat impact analysis	A boat impact analysis requires definition of impact energy. The impact energy is transferred into dent growth of the impacted tube, deformation of member being hit, global deformation of the structure and energy absorption of the ship. After unloading the boat impact, a 100-year design wave may be stepped through the piled jacket structure to document its strength according to different codes. A boat impact analysis may also be simulated by a dynamic analysis in which non-linear springs transfer the kinetic energy from a point mass with a given velocity.

Vivana

VORTEX INDUCED VIBRATIONS OF SLENDER MARINE STRUCTURES

Last revised: January 27, 2020. Describing version 4.16-02 (64-bit).

Vivana is a computer tool for calculation of vortex induced vibrations (VIV) of slender marine structures such as risers, free span pipelines and cables subjected to ocean current. This response type may in many cases be decisive for the design and operation of marine systems.

FEATURES OF VIVANA

FEATURE	DESCRIPTION
Typical slender marine structures: e.g. Risers, umbilicals, pipelines, subsea jumpers, etc.	 Coefficient based added mass coefficient excitation coefficient damping coefficient Finite element model, 3D response, arbitrary geometry Frequency domain, response at eigenfrequencies Pure CF (cross flow), pure IL (in line) or CF + IL excitation
Fatigue analysis	 All active frequencies will contribute Miner-Palmgren damage accumulation 8 points around the cross section to account for axial force variation, 3-D structure and CF/IL response

Mimosa MOORING LINES ANALYSIS

Last revised: September 9, 2019. Describing version 6.3-10 (64-bit).

Mimosa is an interactive program for static and dynamic analysis of moored vessels. It computes static and dynamic environmental loads, corresponding displacements and motions of the vessel and static and dynamic mooring tensions.

FEATURES OF MIMOSA

FEATURE	DESCRIPTION	
Static and dynamic mooring system analysis	Mimosa offers a variety of options such as calculation of the vessel's wave frequency and low- frequency motions and mooring line tensions. Several options are available for analysis of the properties of the mooring system and individual mooring lines.	
Static and dynamic environmental forces due to wind, waves and current	 4 wind spectra, incl. ISO 19901-1 (NPD) and API 5 wave spectra, wave spreading Vertically varying current profile 	
Tension optimization Non-optimised Optimised	Optimum distribution of tension based on either minimising the maximum tension in the mooring system or least squares minimisation including thrusters.	
1 st -order wave-induced motions (wave frequency, WF)	Wave induced motion in the WF range solved in frequency domain, using transfer functions for vessel and wave spectrum, ensuring computer efficient computations.	
Slow-drift motions (low frequency, LF)	Maximum slow drift motion and maximum dynamic mooring tension based on non-Gaussian statistics.	
Gaussian and non-Gaussian statistics of extremes	Combining WF and LF motion to compute the extremes of the combined WF and LF motion	
Dynamic line models	 Simplified analytic model Finite element model External motion-to-tension transfer functions 	

Transient motion after line breakage Transient motion after line break Transient motion after line break Transient motion after line break Time history of line tension during transient motion To REIGHBOURING STRUCTURE SURGE	Transient motion after a line breakage or thruster failure in terms of time traces of motion and tension, motion trajectory, maximum excursion of any given point on the vessel, and maximum mooring tension. This also includes free drift (DP blackout).
Automatic thruster assistance	Static and dynamic forces from thrusters under dynamic positioning control.
Stability analysis	Stability of the vessel in single point mooring or turret mooring checked by eigenvalue analysis.
Long term simulation	Long term simulation results based on using a macro command facility for running a set of environmental conditions and producing corresponding sets of results, covering e.g. 5-20 years of operation

RISER ANALYSIS

Last revised: January 27, 2020. Describing version 4.16-02 (64-bit).

Riflex was developed as a tool for analysis of flexible marine riser systems but is just as well suited for any type of slender structure such as mooring lines, umbilicals, steel pipelines and conventional risers.

These slender structures are characterized by:

- Small bending stiffness
- Large deflection
- Large upper end motion excitation
- Nonlinear cross section properties
- Complex cross section structure

Riflex is run via Sima.

FEATURES OF RIFLEX

FEATURE	DESCRIPTION
Seafloor to surface vessel, one-point seafloor contact	In this topology, the riser is suspended between two defined points. The lower end is fixed while the upper end is connected to the surface vessel.
Seafloor to surface vessel, seafloor tangent	Compared to the above topology this system includes additional features: • Seafloor tangent boundary condition • Buoyancy guide at one point The seafloor contact is modelled by bilinear stiffness. The stiffness is discretized and implemented as springs at the nodal points that may touch the seafloor.
Free lower end, suspended from surface vessel	This topology is characterized by a free lower end and all degrees of freedom being specified at the upper end. This configuration represents typical installation phases but as indicated by the figure, towing configurations can be analysed as well.

Postresp

POSTPROCESSOR FOR STATISTICAL RESPONSE CALCULATIONS

Last revised: April 12, 2022. Describing version 7.1-01.

Postresp is an interactive graphic postprocessor for processing and presentation of responses in terms of transfer functions in the frequency domain. The transfer functions are usually generated by one of the hydrodynamic analysis programs in Sesam but they may also be transfer functions for any other kind of response.

In this description, the term "transfer functions" is used. In Sesam the terms "response variables" and "response amplitude operators" are also used with the same meaning.

FEATURES OF POSTRESP

FEATURE	DESCRIPTION
Main features	 The main features are: Display of transfer functions Calculation and display of response spectra Calculation and display of short-term responses Calculation of short-term statistics Calculation and display of long-term responses Stochastic fatigue calculation
Response variables	The transfer functions are normally read from a file produced by a Sesam program but they may also be typed in directly. 1 st - or 2 nd -order transfer functions may be combined either as standard motion combinations for displacement, velocity or acceleration, or by special combinations where the user is free to add transfer functions with scaling factors in any way. The transfer functions may be printed, displayed and saved to a plot file.
Sectional forces Sectional Force Diagram Bending moment about Y axis for Direction 180.0	Sectional forces and moments may be presented as a diagram, i.e. the force/moment variation along the axis of the structure. This diagram corresponds to the force/moment diagram along the "beam" axis as presented by <u>Cutres</u> subsequent to a structural analysis.

Stochastic fatigue calculation	Stochastic fatigue calculations are available:
	• Short term fatigue calculation based on short term duration of a given sea state and assuming Rayleigh distribution of the stress ranges
	 Long term fatigue calculation either based directly on a scatter diagram where Rayleigh distributions are assumed for each cell or based on a Weibull-fit from a long- term response calculation of the significant responses (stress ranges) of the cells.

RAO RESPONSE AMPLITUDE OPERATORS

Last revised: December 20, 2016. Describing version 1.0-00.

The console program RAO reads sets of user defined response amplitude operators, calculates the corresponding accelerations (real part and imaginary part) and writes the results to <u>Sestra</u> input files, S#.FEM and L#.FEM. Fluctuating gravity and forward speed (in terms of the Froude number) are accounted for.

The data on the output file have the same format and structure as the corresponding loads computed by the hydrodynamic solvers (Wadam and Wasim).

FEATURES OF RAO

FEATURE	DESCRIPTION
Load file creation	Provided motion RAO's are converted into accelerations and combined with gravity. The result is written on BRIGAC cards in the L-file
Sestra file creation	The frequencies and headings corresponding to the load case numbers on the L-file are written to the S- file in the same way as what is done by the hydrodynamics solvers
Forward speed	The effect of forward speed is included in the creation of the loads and the data on the S-file

Xtract POSTPROCESSOR FOR PRESENTATION, ANIMATION AND REPORTING OF RESULTS

Last revised: June 16, 2021. Describing version 6.0 (64-bit).

The description of Xtract is organised in sections:

- <u>Structural analysis results</u>
- <u>Hydrodynamic analysis results</u>
- Other results
- Main features
- Models and results for presentation
- Result cases
- <u>Complex results</u>
- Animation of dynamic behaviour
- Exporting data for further processing and reporting

Xtract is owned and developed by Ceetron AS and is the model and results visualisation program of Sesam. It offers general-purpose features for processing, displaying, tabulating and animating results from static and dynamic structural analysis as well as from various types of hydrodynamic analysis.

FEATURES OF XTRACT

Structural analysis results

Xtract presents results for truss, beam, membrane, plate, shell and solid models. These results may be:

- Displacements, velocities and accelerations
- Forces
- Stresses

Xtract may create combinations and scan over result cases and combinations for highest and lowest values.

The graphic results presentation may be printed directly or saved to various graphic file formats for inclusion in reports. Tabulated data may be exported to file for importing into spreadsheets for customised results manipulation.

A 3D model with (animated) results may even be exported and opened in other tools for interactive 3D viewing:

- <u>Sesam Insight</u>, a web application for sharing and collaboration in the cloud
- Xtract Viewer (free program installed together with Xtract)
- PowerPoint slideshow (with free plugin embedded)
- Word (with free plugin embedded)

This allows a Sesam user to prepare data and send to a non-Sesam user who may view the data in an Xtract-like environment.

Hydrodynamic analysis results

The animation feature of Xtract is especially useful for presenting results from hydrodynamic analyses. The motion of a vessel in waves may for example be animated superimposed by the corresponding hull stresses.

Other results

Various programs can store results on a VTF file that may be opened for postprocessing in Xtract:

- <u>Wasim</u>: Time domain results for a vessel and sea surface
- <u>Installjac</u>: Time domain results for a launching/floating stability/upending process of a jacket
- Riflex: Time domain results for conductors, risers and anchor lines
- <u>Stofat</u>: Stochastic fatigue results for a stiffened plate
- <u>ShellDesign</u> (a product of Dr.techn. Olav Olsen): Steel reinforced concrete shell design results

Main features

FEATURE	DESCRIPTION
Interactive rotation/zooming	 Quick and easy interactive rotation and zooming of model with results, during animation if relevant: Rotating, optionally with fixed vertical axis Zooming with buttons, mouse and wheel Rubberband zooming Panning Fitting to frame Function keys F5 - F9 for predefined view positions as in <u>GeniE</u>
Model display	 Model display and manipulation features include: Surface with and without mesh plus outline view Light sources giving shading effects or ambient light Orthographic and perspective views Colouring of elements according to element type, material type and shell/plate thickness Adding model coordinate system, element axes, labels for node and element numbers Retrieving sets created by the preprocessor and creating new sets
Load display Hydrodynamic pressures computed by Wadam displayed in orange colour in Xtract	 Manually defined loads and hydrodynamic loads computed by <u>Wajac</u> and <u>Wadam</u> may be added to the displayed model. Optionally labelled with value. Dynamic loads may be shown together with the animated response. Point loads Line loads Surface loads, normal pressure and in component form

Models and results for presentation

Xtract may present analysis results from different programs. A list of files for processing is provided below. The required program extension is also given.

FEATURE	DESCRIPTION
Structural Results Postprocessing R#.SIN file	 The R#.SIN (or R#.SIU or R#.SIF) file is typically generated by <u>Sestra</u>. Its contents are: FE model Nodal displacements Beam forces Element stresses Program extension required: STRU
Hydrodynamic & Structural Results Postprocessing R#.SIN + Gn.SIF	 The R#.SIN file: see above. The Gn.SIF file is typically generated by <u>Wadam</u>, <u>Wajac</u> or Prepost. Its contents are: Transfer functions for rigid body motion of floating structure (Wadam) Sea surface elevation (Wadam) Transfer functions for base shear and overturning moments for fixed frame structure (Wajac) Transfer functions for forces and stresses in selected elements (Prepost) Program extension required: STRU
Model & Loads Presentation T#.FEM + L#.FEM Conceptual modeller and code checking beams & plates Wadam frequency domain wave loads Wajac wave loads on frame structures	 The T#.FEM file is generated by GeniE, Patran-Pre or <u>Presel</u>. Its contents are: FE/panel model with nodes, elements, material, boundary conditions and loads (GeniE and Patran-Pre) 2nd or higher level superelements (Presel) The L#.FEM file is typically generated by <u>Wadam</u>, <u>Wasim</u>, <u>Wajac</u> or <u>Installjac</u>. It is an appendix to the T#.FEM file and not a self-contained file. Its contents are: Hydrodynamic line and pressure loads Program extension required: none

Hydrodynamic Results Postprocessing T#.FEM + L#.FEM + Gn.SIF GeniE conceptual modeller and code checking beams & plates Wadam frequency domain wave loads Wajac wave loads on frame structures	All three files are described above. Program extension required: ANIM (to allow animation)
Animating <u>Wasim</u> Results file.VTF (+ 2D-series.VTF) (+ T#.FEM) Wasim time domain wave loads (Conceptual modeller and code checking beams & plates	 VTF file produced by Wasim. The file contains: Model of a vessel Sea surface Time domain motion results An additional VTF file containing 2D series data (component versus time) may optionally be opened. An additional T#.FEM file containing a FE model (extra geometry) may optionally be opened. Program extension required: ANIM
Animating <u>Installjac</u> Results file.VTF (+ 2D-series.VTF) Installjac launching of jackets	 VTF file produced by Installjac. The file contains: Models of jacket, barge and sea surface Time domain motion results of the launching/floating stability/upending process An additional VTF file containing 2D series data (component versus time) may optionally be opened. Program extension required: ANIM
Animating <u>Riflex</u> Results file.VTF (+ 2D-series.VTF) (+ T#.FEM) Riflex non-linear slender structures GeniE conceptual modeller and code checking beams & plates	 VTF file produced by Riflex. The file contains: Time domain results for conductors, risers and anchor lines An additional VTF file containing 2D series data (component versus time) may optionally be opened. An additional T#.FEM file containing a FE model (extra geometry) may optionally be opened. Program extension required: ANIM

Presenting <u>Stofat</u> Results file.VTF Stofat shell/plate fatigue	 VTF file produced by Stofat. The file contains: Stiffened plate model with stochastic fatigue analysis results An additional VTF file containing 2D series data may optionally be opened. Program extension required: STRU or ANIM
Presenting <u>ShellDesign</u> results file.VTF ShellDesign concrete design	 VTF file produced by ShellDesign (a product of Dr.techn. Olav Olsen). The file contains: Steel reinforced concrete shell design results Program extension required: SHDS
Superelement models	Large superelement hierarchies as well as single superelement models are handled. All results may be presented in the same way for all superelements at any level. The way in which the model and results are presented may be controlled for the superelements individually. A tree overview of the superelement hierarchy makes it easy to select and display the desired superelement whether this is a first, top or intermediate level superelement.

Hierarchical organisation of results

The structural analysis results stored on the Results Interface File are:

- Displacement (and optionally velocity and acceleration) components in the nodes
- Force and moment components for beam elements
- Stress components for membrane, shell and volume elements

Based on the above results data Xtract computes and presents results organised in a hierarchical manner: result positions > result attributes > result components. See details below.

	Populte in pades (averaging of stresse	attributes being a selection of the following:
	Results in nodes (averaging of stresse	
	General (ordinary) stresses	
E- 49 P-STRESS	Principal stresses	 DISPLACEMENT – nodal displacements
→ P1		
→ P2		 VELOCITY – nodal velocities
P3		
	Principal membrane stresses for shell	
	Decomposed stresses (membrane+b	 ACCELERATION – nodal accelerations
	Integrated stresses through thickness	
	Nodal displacements	• PEACTION EORCE reaction forces in
B REACTION-FORCE	Reaction forces/moments in constrai	REACTION-FORCE - reaction forces in
	Percults in element nodes (no averagi	supported (fixed or prescribed) nodes
	Concert (and incertified a strength	
E- 43 G-STRESS	General (ordinary) stresses	
→ SIGXX		 G-STRESS – general stresses (found on
SIGYY		
TAUXY		the results file)
TAUXZ		
TAUYZ		D STRESS principal stresses
	Principal stresses	
	Drin singly a surface a stresses for shall	 PM-STRESS – principal membrane
HI	Fincipal memorane stresses for shell	· · · · · · · · · · · · · · · · · · ·
	Forces/moments for beam elements	stresses
😥 🗠 🕙 D-STRESS	Decomposed stresses (membrane+b)	
R-STRESS	Integrated stresses through thickness	D CTDECC decomposed stresses for she
IFI	Beam stresses computed from forces	 D-STRESS – decomposed stresses for sne
Element average	Results in midpoints of elements (ave	olomonto
	Posults in points within elements (ave	elements
	Results in points within elements (nu	
E−L. Surface resultpoints Results in surface points (6 and 8 nod		 R-STRESS – stresses integrated through the thickness
		the thickness
		 G-FORCE – general forces for beam elements
		 G-FORCE – general forces for beam elements B-STRESS – beam stresses
ult components	Results in nodes (averag	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components.
	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components:
	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X_X_Z_BX_BX_BZ_and
ult components	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and
Ult components □ Nodes □ SIGXX → SIGXX → SIGYY → SIGYY	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL
Jlt components → SIGXX → SIGXX → SIGYY → TAUXY	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL
JIt components	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL OTDECO: CIONY, CIONY, TAUNY, I
JIt components	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc.
Ult components → Nodes → SIGXX → SIGXX → SIGYY → TAUXY → TAUXY → TAUXZ → VONMISES	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc.
Ult components → SIGXX → SIGXX → SIGYY → TAUXY → TAUXZ → TAUXZ → VONMISES → SIGY	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc.
JIt components → Nodes → SIGXX → SIGXX → SIGYY → TAUXZ → TAUXZ → TAUYZ → VONMISES → SIGX → P1	Results in nodes (averag General (ordinary) stress	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3.
JIt components → Nodes → SIGXX → SIGXX → SIGYY → TAUXY → TAUXZ → TAUXZ → TAUXZ → TAUXZ → P1 → P2	Results in nodes (averag General (ordinary) stress Principal stresses	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3.
Ult components Nodes G-STRESS → SIGXX → SIGYY → TAUXY → TAUXY → TAUXZ → VONMISES → P1 → P2 → P3	Results in nodes (averag General (ordinary) stress Principal stresses	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2.
Ilt components Image: Second stress	Results in nodes (averag General (ordinary) stress Principal stresses	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2.
JIt components → Nodes → SIGXX → SIGXX → SIGYY → TAUXY → TAUXZ → TAUXZ → TAUZZ → VONMISES → P1 → P2 → P3 ← STRESS	Results in nodes (averag General (ordinary) stress Principal stresses	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2.
Ilt components Image: Nodes Image: Siger	Results in nodes (averag General (ordinary) stress Principal stresses Principal membrane stre Decomposed stresses (n	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc.
It components Image: Nodes Image: Stress	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n Integrated stresses throu	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc.
Ilt components Image: Second stress	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n) Integrated stresses throu Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc.
JIt components	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stra Decomposed stresses (n) Integrated stresses throw Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc.
JIt components Nodes G-STRESS G-	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n) Integrated stresses throu Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc.
Ilt components Image: Solution of the second sec	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n) Integrated stresses throw Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc.
JIt components	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n Integrated stresses throw Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc. REACTION-FORCE: X-FORCE, Y-FORCE
JIt components → Nodes → SIGX → SIGX → SIGY → TAUXY → TAUXZ → TAUXZ → TAUXZ → TAUZZ → TAUZZ → P1 → P2 → P3 @ - @ PM-STRESS @ - @ PM-STRESS @ - @ D-STRESS @ - D-STRESS - D-	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stra Decomposed stresses (n Integrated stresses throu Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc. REACTION-FORCE: X-FORCE, Y-FORCE Z-FORCE, RX-MOMENT. etc.
Jlt components Image: Nodes Image: Signed stress	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n) Integrated stresses throu Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components. Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc. REACTION-FORCE: X-FORCE, Y-FORCE Z-FORCE, RX-MOMENT, etc.
JIt components Nodes G-STRESS G-STRESS SIGXX SIGYY TAUXY TAUXY TAUXZ TAUXZ TAUZZ TAUZZ TAUZZ PSTRESS P-STRESS D-STRESS	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n Integrated stresses throw Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components. Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc. REACTION-FORCE: X-FORCE, Y-FORCE Z-FORCE, RX-MOMENT, etc.
JIt components Nodes G-STRESS SIGXX SIGYY TAUXY TAUXY TAUXZ TAUYZ TAU	Results in nodes (averag General (ordinary) stress Principal stresses Principal stresses Principal membrane stre Decomposed stresses (n) Integrated stresses throw Nodal displacements	 G-FORCE – general forces for beam elements B-STRESS – beam stresses Each attribute has its own set of result components Examples of components: DISPLACEMENT: X, Y, Z, RX, RY, RZ and ALL G-STRESS: SIGXX, SIGYY, TAUXY, etc. P-STRESS: P1, P2 and P3. PM-STRESS: P1 and P2. D-STRESS: SIGMX, SIGMY, TAUMXY, etc. G-FORCE: NXX, NXY, NXZ, MXX, etc. REACTION-FORCE: X-FORCE, Y-FORCE Z-FORCE, RX-MOMENT, etc.

Т

٦.

Result cases

The structural analysis results stored on the Results Interface File are available as result cases and result combinations. Result combinations are one or more superimposed factorised result cases. The organisation is hierarchical: run number > result case > occurrence. See details below.

FEATURE	DESCRIPTION
Hierarchical organisation of result cases Run: User User • Result case: • comb1 • 1 • 0 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 •	 Result cases are organised in: Run numbers: In most cases there will initially be only one run number (=1). Combinations, scan result cases and scaled complex result cases created in Xtract will be put in a run 'number' termed User. Result cases: Correspond to load cases or combinations for a static analysis Correspond to wave directions for frequency domain analysis Occurrences Correspond to frequencies for frequency domain analysis
Combinations	Any number of result cases (but only one complex result case) may be included in a combination. The combination may comprise any selection of result positions and attributes (being available in the result cases included in the combination). All presentation options for a result case are also available for a combination.
Scanning	Any number of result cases may be scaled and scanned for the (absolute) maximum or minimum of a selected result component. The data is put into a scan case available in parallel with result cases and combinations. For each result value put into the scan case an accompanying component (termed SCANINDEX) is created: the result case/occurrence owning the result value, i.e. the "winner" of the scan.

Complex results

There are specialised features for handling results from a frequency domain analysis. The complex results from such an analysis cannot be manipulated and presented in the same way as results from a plain static analysis. When presenting results for a complex case it needs to be evaluated for a specific phase of the wave. Furthermore, special considerations must be made when combining and scanning complex result cases.

Complex results are handled as follows:

Scanning	A scanning for the (absolute) maximum or minimum value of a component may be done for any number of complex result cases and any number of static (non-complex) result cases. In this process, each complex result case is evaluated. The evaluation may be done for a given phase or for the same criterion as the scanning over the result cases. The latter evaluation is normally the desired one and involves that if you want to scan several result cases for the highest von Mises stress then the complex result cases need to be evaluated for the highest von Mises stress also.
Scaling	A complex result case may be scaled. I.e. the real and imaginary parts are simply multiplied by a given factor.

Animation of dynamic behaviour

FEATURE	DESCRIPTION
Mode shape animation	The mode shape (eigenmodes) may be animated. The number of frames (time steps) through the 360- degree cycle is specified. The more frames the smoother animation.
Frequency domain animation Oscillating force	The harmonic motion of a structure may be animated. The step interval in degrees is specified. The shorter step the smoother animation.
Time domain animation Time varying force	The time domain motion of a structure may be animated. Which time steps to include in the animation is specified.
Animation speed	The animation speed may be adjusted by setting frames per second.
Saving animation	An animation may be saved to alternative formats for replaying outside Xtract.

Exporting data for further processing and reporting

By exporting data from Xtract you have access to even more presentation features.

FEATURE	DESCRIPTION
Save tabulated data to file	Tabulated model data plus nodal and element results may be saved to file for import into another program, e.g. Excel.
Export graph data	Data graphed in Xtract may be exported to file for import into e.g. Excel.
<section-header></section-header>	 A 3D model with results (and animation) may be exported to a VTFx file. The VTFx file may be opened for interactive 3D viewing in: <u>Sesam Insight</u>, a web application for sharing and collaboration in the cloud Xtract Viewer (free program installed together with Xtract) PowerPoint slideshow (with free plugin embedded) Word (with free plugin embedded) A Sesam user may thus prepare data and send to a non-Sesam user who may view the data in an Xtractlike environment.
Global model + sub-model	Two 3D models may be exported to a common VTFx file. The feature is general but it is particularly useful for comparing a sub-model with the global model in a sub-modelling type of analysis, i.e. involving use of the program <u>Submod</u> . The deformed shape of the two models may for instance be overlaid to verify that the deformations at the outer boundary of the sub-model match those of the global model. Such match of deformations is an absolute demand in a sub-modelling analysis.

Framework

STEEL FRAME DESIGN

Last revised: June 11, 2021. Describing version 4.3-00 (64-bit).

Framework is a postprocessor for frame structures, i.e. 2-node beam elements, with the following capabilities:

- Wave induced fatigue analysis
- Wind induced fatigue analysis
- Earthquake analysis including code checking

FEATURES OF FRAMEWORK

The processes in Sesam involved in wave induced fatigue analyses – the time domain, deterministic, spectral and stochastic analysis methods – are illustrated by the figure below.

A description of the main features of Framework follows below.

FEATURE	DESCRIPTION
Wave induced deterministic fatigue	 Based on analyses in: <u>Wajac</u>: Several deterministic waves of different heights, lengths and directions <u>Sestra</u>: Static analysis The deterministic fatigue analysis method is for dynamically insensitive structures in shallow to medium water depths where non-linearities in the wave force such as drag and variable submergence are of importance. The energy content of the seastates is not directly represented in the method so judgment and experience are required in selecting the discrete waves to include in the analysis.

Stofat FATIGUE ANALYSIS OF WELDED PLATES AND SHELLS

Last revised: June 14, 2021. Describing version 4.1-00.

Stofat is a postprocessor for wave induced fatigue analysis of welded shell and plate structures. There are two fatigue analysis methods available:

- Stochastic fatigue based on stress transfer functions in the frequency domain
- Rainflow counting based on time domain analysis

The following programs are typically involved in the process, <u>GeniE</u> for modelling, <u>HydroD</u> for hydrodynamic pressure load calculation (<u>Wadam</u> for frequency domain and <u>Wasim</u> for time domain), and <u>Sestra</u> for computation of structural response.

FEATURES OF STOFAT

FEATURE	DESCRIPTION	
Wave induced stochastic fatigue HydroD toad t	 Required analyses in: HydroD/Wadam: Spectral (frequency domain) waves, unit amplitude waves of different frequency and direction Sestra: Dynamic or quasi-static analysis The stochastic fatigue analysis method is for dynamically sensitive and insensitive structures in deep water where the non-linearities in the wave force are less important. The structural dynamic analysis, if required, may be computer intensive. The method properly represents the energy content of the sea-states. This analysis is equivalent to the wave induced stochastic fatigue analysis available for frame structures in Framework. 	
Time domain fatigue based on time history load	 Required analyses in: HydroD/<u>Wasim</u>: Time domain wave load analysis <u>Sestra</u>: Time domain dynamic analysis The fatigue analysis is based on stress reversals determined by a rainflow-counting algorithm. 	
Time domain fatigue based on FFT	Based on Fast Fourier Transform (FFT) of spectral data and rainflow-counting.	
Long term stress calculation	 The long-term stress calculation: Maximum and minimum stress Return period Probability level Exceedance Etc. 	

Platework STIFFENED STEEL PLATE CODE CHECKING

Last revised: January 8, 2018. Describing version 1.9-00.

Platework is an interactive program with for code checking of stiffened plate structures according to API, DNV GL and NPD rules.

FEATURES OF PLATEWORK

FEATURE	DESCRIPTION	
Independent or FE use	In addition to use in conjunction with a FE analysis the program can be used as an independent tool to assess stiffened plates with given loads.	
Capacity models Plate Stiffener Girder	 The FE model is fully or semi-automatically split into an assembly of capacity models: Simple unstiffened plate Stiffener Girder Uniaxially and orthogonally stiffened panel (API) Capacity models may be displayed as shown on the previous page. 	
Capacity models for any FE mesh	The capacity model creation and code checking are independent of the FE mesh. The only difference is that a finer mesh will produce more accurate code checking results.	
Same assembly of capacity models	The capacity model creation and code checking are independent of division into superelements.	

Cutres COMPUTATION OF SECTIONAL RESULTS

Last revised: June 14, 2021. Describing version 2.0-00.

Cutres is a postprocessor for presentation of results in terms of stresses, forces and moments in user defined sections through a FE shell/plate model with beam stiffeners. This is primarily relevant for oblong structures that may be regarded as beams, e.g. ship type structures and pontoons of semi-submersibles.

Force/moment diagram along "beam" axis

FEATURES OF CUTRES

FEATURE	DESCRIPTION
Arbitrary section	An arbitrary section through a model may be created.
Assembly of sections	An assembly of equally spaced sections through a model may be created.
Element types	The model may consist of beam, truss, shell, plate and membrane elements.
Stress/force distribution over section	By interpolating within each intersected element, the stress/force distribution over each section is found and graphed.
Integration over each section	The stresses/forces are integrated over each section to find sectional (beam) forces and moments, i.e. axial force and two shear forces plus torsional moments and two bending moments.

ShellDesign Design of concrete structures

Last revised: February 15, 2021. Describing version 6.1.3.

ShellDesign is owned and developed by Dr.techn. Olav Olsen and sold and supported by DNV GL.

ShellDesign is a design program and post-processor for reinforced concrete shell structures subjected to stresses in-plane and out-of-plane.

This feature description is organised in sections:

- The Conventional Design Method (CDM)
- The Consistent Stiffness Method (CSM) for shell FE models
- The Consistent Stiffness Method (CSM) for solid FE models
- <u>The Modified Compression Field Theory (MCFT)</u>

Common practice is to use the Conventional Design Method (CDM) which is based on results from a linear FE analysis. However, the design calculations in ShellDesign accounts for non-linear behaviour of reinforced concrete due to cracking etc. The method enables high quality and efficient design.

Non-linear material behaviour of reinforced concrete can also be accounted for by an iterative analysisdesign process named the Consistent Stiffness Method (CSM). The method is applicable for shell and solid FE models.

Finally, there is a method named Modified Compression Field Theory (MCFT) that includes a full 3-axial material model. This improves the design for shear stresses eliminating the shortcomings of the simplified design rules for transverse shear.

FEATURES OF SHELLDESIGN

The Conventional Design Method (CDM)

Sectional forces	The shell sectional stress resultants, also denoted sectional forces, are eight forces and moments in a design section.
Load cases	ShellDesign defines the following load cases:
	 OLC – Original load case FE analysis result case
	 ELC – Equilibrium load case Derived from the OLCs but where structure equilibrium has been established
	 ILC – Input load case Defined by user
	 PLC – Pre-stressing load case Defined to include the pre-stressing effect from pre-stressed reinforcement
	BAS – Basic combination
	 Defined by scaling and combining other load cases
	 Combines loads to represent real load situations
	All load cases above include the eight sectional forces.

Limit states	The limit states are:
	 Ultimate – ULS Stresses in concrete and reinforcement, and shear capacity are calculated.
	 Accidental – ALS Stresses in concrete and reinforcement, and shear capacity are calculated.
	 Serviceability – SLS Stresses in concrete and reinforcement, and crack widths and depths are calculated.
	 Fatigue – FLS Stress range tests based on a cumulative linear damage theory (Miner's sum) for concrete and reinforcement are calculated. (Currently not available for design code EC2. Will be implemented on request.)
Steel reinforcement	Three different steel reinforcement types are available: • Normal reinforcement
3. N ₂ M ₂	Pre-stressed reinforcement
Local Directions: 2. V ₁	Shear reinforcement
$\begin{array}{c} SR \\ Y2 \\ Y2 \\ X2 \\ V1 \\ V$	Steel reinforcement properties are specified according to selected design code.
face 1 (-3 face) Global Directions: x	The reinforcement direction is defined for each design section for all reinforcement types. The reinforcement direction refers to the local 1, 2, 3 axis system.

Relationship between the strain components and the 1, 2, 3 – axis:

The calculation of the in-plane strains and stresses in a design section is based on non-linear sectional response due to the non-linear material behaviour of reinforced concrete. The transverse sectional forces are ignored when establishing the sectional response and handled separately.

The non-linear sectional analysis is based on the following assumptions:

- Sectional forces due to load effects are known
- Plane sections remain plane
- Linear strain distribution over the shell thickness
- The stress-strain relationships for concrete and reinforcement are known (non-linear)

These assumptions lead to six non-linear equilibrium equations with six strain components as unknown quantities. The design section is divided into layers with equal thickness.

A Newton-Raphson iteration method is used to find the sectional response. Constant strains are assumed within each layer, and by applying the material laws for concrete and reinforcement a state of equilibrium with external loading is established.

The stresses are derived based on the results from the non-linear sectional response. The result of the sectional design is a state of strain satisfying the input values describing the sectional geometry and forces, the amount and arrangement of reinforcement, and the material properties.

Design calculation for shear forces	The capacity for the shear forces is based on empirical formulas of the design codes. The simplified method is the current empirical method used in the conventional shear design.
(+3 face) 3. N ₂ M ₂ V ₁ N ₁₂ V ₁ N ₁₂	A beam analogy approach is used to establish a uni-axial condition for the three membrane forces, the three bending moments, and the two transverse forces to be used in the beam shear design formulas.
face 1 (- 3 face)	The beam shear design formulas are applied to equivalent beam strips of unit width for which the uni-axial condition is established for every possible orientation (steps of e.g. 5 degrees). The orientation yielding the most critical shear forces is used to determine the amount of shear reinforcement.
Utilization ratios UR 0.641 0.971 1.000 0.140 1.000 0.651 1.668 ** 0.682 0.874	The results from the design calculations (code checking) are expressed as utilization ratios (UR). A utilization of 1.0 means that the limit is reached. The limit refers to maximum allowable concrete stress, reinforcement stress, shear capacity, crack width etc.
Result tables	Results are presented in tables over:
TABLE UR=MAX for concrete and reinforcement Structure part : PA=COLUMN FS=1-184 HS=1-95 PART FS HS ID th/ar LOAD-ID PHA LIM UR	Geometry
COLUMN 83 1 C1 850 HD arr HD arr <th< td=""><td>Sectional forces</td></th<>	Sectional forces
	Principal forces
	Nodal displacements
	Concrete utilizations
	Stress range utilizations (Miner's sum)

The Consistent Stiffness Method (CSM) for shell FE models

All features available for the conventional design method (CDM) are also available for the consistent stiffness method for shell FE models, if not otherwise stated. Note that FLS is not supported in CSM.

FEATURE	DESCRIPTION
Shell FE models	The FE model can contain any type of element and be a combination of concrete and steel structural parts. Only the concrete structure with shell elements is post-processed in ShellDesign. Non-linear properties are only available for 8-node shell elements, 6-nodes elements are linear.
Loads	 The CSM shell analysis supports the following loads: Gravity (real) Line load (real, imaginary) Surface load (real, imaginary) Temperature load (real) Node load (real, imaginary) Nodal displacements (real, imaginary) Nodal acceleration (real, imaginary) Rigid body acceleration (real, imaginary)
Structural analysis FEM-file FEM Analysis Sectional Stiffness FEM Result File OLC File Design File Results in Tables Pot File Results in Pot File Results in Pot ShellDesign	The CSM analysis for shell FE models is an iterative procedure in which the element stiffness matrices of the structural analysis in Sestra are progressively refined accounting for the non-linear material response determined by ShellDesign. The iteration continues until a convergence criterion is satisfied.

The Consistent Stiffness Method (CSM) for solid FE models

All features available for the conventional design method (CDM) are also available for the consistent stiffness method for solid FE models, if not otherwise stated. Note that FLS is not supported in CSM.

Solid FE models	For solid FE models, only solid elements can be included. Structural parts with other elements can be included in the analysis using a matrix interface file (M file). Non-linear properties are only available for 20-node solid elements, 15 nodes elements are linear.
Loads Structural analysis	 The CSM solid analyses supports the following loads (with corresponding Sesam load cards): Gravity (real) Line load (real, imaginary) Surface load (real, imaginary) Temperature load (real) Nodal load (real, imaginary) Nodal acceleration (real, imaginary) The CSM analysis for solid FE models is an iterative procedure in which the element stiffness matrices of a structural analysis performed by Olav Olsen's equation solver, OOsolver, are progressively refined accounting for the non-linear material response determined by ShellDesign. The iteration continues until a convergence criterion is satisfied.
Stepwise analysis	ShellDesign may also offer stepwise analysis for
	solid FE models in OOsolver, also denoted as construction sequence analysis. The effect of modelling and loading in different construction sequences will be taken into account.

The Modified Compression Field Theory (MCFT)

Sesam Insight

COLLABORATION PLATFORM FOR SESAM PROJECTS IN THE CLOUD

Last revised: April 19, 2022.

Sesam Insight lets users share and collaborate on their structural analysis workspaces. It is a web-based application that allows 3D visualization of Sesam models, analysis results and other related data in any web browser.

FEATURES OF SESAM INSIGHT

FEATURE	DESCRIPTION	
<complex-block></complex-block>	System requirements of Sesam Insight are an internet connection and a web browser. Any device meeting those requirements (desktop PCs, laptops, tablets, smartphones) can be used to log on to the service and explore 3D analysis models. Limitations in screen size may affect the user experience. Touch screen controls are supported as well as mouse and keyboard input.	
3D visualization of various file formats	 Multiple file formats are supported but the amount of information displayed in Sesam Insight varies depending on the file type: <u>GeniE</u> workspace files (.gnx) and accompanying code check results (.h5) Finite element models (.fem) Results and animations (.vtf, .vtfx) Open class exchange (.3docx) and Step files (.stp) 	
Colouring and labelling Section H700300 H900400 H900400 H900300 H900300	Colour-coding result values, properties or comments provide a quick and easy overview. When labels are activated in addition, they will display the value or name of the colour-coded metric. If labels are switched on with no colour-coding present, then they will show the name of the concepts or parts of the model. Hidden and semi-transparent parts, as well as those without the selected metric assigned to them, will not be labelled.	

Detail mode for individual concepts Q Image: State of the stat	 Any concept or part of the 3D model can be selected and investigated in detail mode. This will give access to all properties, results and attachments connected to it. Where the colour-coding menu offers a rather highlevel overview of for example material assigned to parts, the detail mode provides the physical attributes of the material.
Color code Properties Results Material Properties Material Comments Section Marine growth Morison	 Control over colour coding from the same menu for the following categories (where applicable): Results (ULS code check utilization for beams, plates and joints; FLS damage per beam position (limited to workflows involving Sesam Wind Manager)) Properties (material, plate thickness, beam cross section type, marine growth, Morison coefficients and other) Comments (quick overview of comments in the workspace, categorized by open/closed status and associated parts of the model)
Access management on workspace level for project stakeholders	 Grant/revoke permission to access shared workspaces in Sesam Insight. A company administrator can assign different roles to their projects' stakeholders: Administrator – can create assets and workspaces and has edit privileges for all projects in the company account Editor – can create, modify or remove content from the workspace where the 'Editor' role is assigned Viewer – can open the 3D view of the workspace where the 'Viewer' role is assigned, but cannot create, modify, remove or download any content from it

Log comments	Comments can be logged, viewed and referenced directly to one or many parts or concepts of the 3D model. All comments are stored in a list that other stakeholders can easily browse. Loading a comment will always recreate the exact same 3D view settings of the point in time when the comment was logged. Comments can be replied to, leading to the build-up of a discussion thread visible and traceable for all with access to the workspace. The content of a comment includes: • Author and time of comment creation (automatic) • Title • Description • Referenced parts or concepts (optional) • Status • Replies For accountability reasons, comments of historic revisions of a workspace are locked for editing. At any point in time, the complete list of comments can be downloaded in CSV format.
Notification of other project stakeholders SESAM INSIGHT ③ Q- &- NOTIFICATIONS Mark all as read Message Received New post has been added to comment Apr 8, Mark as 'Material choice' 2020 unread You've been mentioned by Pulivelil, Abin. Apr 2, Mark as @Land, Jan i will take a look at it 	 Draw people's attention to a particular workspace or comment. Users with access to the workspace can be mentioned, which will result in them being notified: Via e-mail: a system-generated e-mail will be sent to the mentioned person, providing a link directly to the workspace and comment where their attention is required Via in-app notification: The mentioned user will see a notification symbol in their Sesam

Referencing specific parts, sets or view states in a discussion with other project stakeholders			or view state keholders	Any concept or group of concepts (set) can be referenced in a comment thread. This will enable it to become an interactive item that is highlighted	
	Discussion: Write your reply here. Use # to link a view, ! to link a model element or @ to mention a person. Add Post Pulivelil, Abin, 25 day(s) ago: @Land, Jan i will take a look at it Land, Jan, 26 day(s) ago: Delete Edit Check also <u>#Side View LO</u> and you'll see the issue we talked about.				when clicked. Similarly, saved views can be referenced, these will be reproduced (angle, perspective, zoom level, active filters, colour-coded properties, etc.) when clicked.
Revisi Workspa Revision R2 R1	ONS ce revision history: Mids Description Additional frame Baseline	hip section Uploader Land, Jan Land, Jan	Uploaded Date 2 Apr 2020, 4 PM 2 Apr 2020, 10 AM	View View Close	 Upload of an analysis model file to an existing workspace will trigger the creation of a new revision. No information will be overwritten and previous revisions can still be accessed in view-only mode for auditability and traceability reasons. Historic revisions therefore serve as snapshots of analysis models, comments and attachments at the point in time when a new head revision was created. The workspace administrator can revert to a previous revision to undo any unwanted changes.

Saved views	 Any current view can be saved and stored to be loaded again at a later point in time and by other users with access to the workspace. Saved views capture and recreate the following information: Perspective and view angle Zoom level Filters and transparency settings Colour-code and label settings
<image/>	In complex 3D models, view isolation can help to draw attention to specific concepts or parts while showing the remaining model in a semi-transparent fashion. This helps focusing a detail while keeping the context by the surrounding geometry. This can be applied to one or many parts or concepts.

Version comparison					Any new model revision uploaded to the Sesam
Change Type	Part Name	UF (V2)	UF (V3)	UF Change	Insight workspace will automatically trigger a
Modified	BRM 4 4 2-5	0.5147	0.5145	-0.03%	comparison with the previous version.
Modified	LM17-0	0.65	0.652	0.3% 1	
Modified	BRM 2 1 2-3	0.1622	0.162	-0.12%	The comparison report will contain information about
Modified	BRM 4 1 2-3	0.12382	0.12373	-0.07% 1	removed, added or modified
Modified	BRM 2 4 1-3	0.128	0.1273	-0.56%	
Modified	BRM 4 1 2.0	0.173	0.172	-0.62%	 analysis results,
Modified	BRM 4 4 1-2	0.2633	0.2631	-0.05%	
Modified	BRM 3 3 1.1	0.5382	0.5386	0.06%	 geometry, and
Modified	LM57-0	0.11566	0.11559	-0.06% ↓	properties.
					Comparisons between any two versions in the workspace history can be created on demand by the user.
View code filter Model General Seams (74) General Seams (74) General Seams (74) General Seams Piles (4) General Seams General Seams Worst Case (8) GodeChkrun C	Check resu UBIZZION FA 2) 2) 49.957 99.97	Ults	Company Jemo Models me: Inplace Analysis Peans 2 2 2 0 1 1 2 2 2	s with code checks	GeniE beam, joint and plate code check results may be imported into Sesam Insight for viewing in 3D. Additionally, it is feasible to study the results for each loading situation independently, and to determine the worst load case or load combination. The GUI also allows users to modify the legend colour coding to have a better understanding of the code check results distribution.

PET PIPELINE ENGINEERING TOOL – THE DEFINITIVE TOOL FOR EARLY PHASE PIPELINE DESIGN

Last revised: October 5, 2018. Describing version 4.1-00.

PET is a tool for the early design stage covering all significant design decisions in a simplified manner. PET contains a wide set of easy-to-use calculation modules for quick assessments of offshore pipeline designs.

In general, PET could be used for early design where all design checks are performed in a simplified way. Later the other Pipeline Tools or other advanced tools can be used for more detailed design.

ONV-OS-F101 version										
DNV-OS-F101 2007/2013	▼ Code	check are done acc	ording to th	ne 2007/20	013 ver	ion of DNV-OS	-F101.			
(ilometer Post		Material Input	:			Load Input				
Start 0.000	End 100.000	SMYS [MPa] SMTS [MPa]	NV555	• <mark>555 625 625 625 625 625 625 625 625 625 </mark>		Design	Pressure [barg]	@ level ([m]	Content mass dens [kg/m3]	ity
The section 1		fy_temp [MPa]		18		System test	264	-240	1025	
Geometry Input		fu_temp [MPa]		18		Incidental to	design press	ure ratio [-]	1.1	
Steel diameter [mm] ID	▼ 415.8	Young's modul	lus [GPa]	207		Water depth	n [m] <mark>300</mark>	and mass d	ensity [kg/m3] 10	25
Steel thickness [mm] D/t =	22.8 20	Poisson's ratio	[-]	0.3			Functioi	nal Enviro	nmental	
Fabrication tolerance [mm]	▼ 1.000	Hardening fact	or [-]	0.92		Moment [kN	Nm] 100	80		
Corrosion allowance [mm]	5	Fabrication fac	tor [-]	0.85		Axial force [kN] <mark>50</mark>	20		
Ovality [%]	1.5	Suppl. req. U fu	ulfilled	No	•	Strain [%]	0.43	0		
Girth weld factor [-]	1					Load condit	ion factor [-]	0.85	5	
Design Input					Result	s				
Failure mode	Condition	Safety class	Corr. D	er.	Calc.	treq. [mm]	Utilitsation [-]]	Utilisation [-]	
Burst	Operation	Medium 🔻	V	0	v	16.43	0.751			
Burst	System test	System test		3		10.83	0.529			
Collapse	Empty	Medium 👻		3		15.69	0.381			
Propagating buckling	Empty	Medium 🔻	v	3	1	21.62	1.270	Buckle a	rrestors recomme	nded
Load comb., LCC, lc = a —						8.25	0.063			
Load comb., LCC, lc = b	System test	Medium 🔻				8.35	0.068			
Load comb., DCC, lc = a	System test	median				4.21	0.105			
Load comb., DCC, lc = b—J					V	4.09	0.096			
Peneste _								Dualda Arra		5101
								BUCKIE ATTE	DIV-OS	
nformation										
				Load	ings: interact	ion (DCC): T_ree	q (- T_corr) < (0.01*OD.		

FEATURES OF PET

FEATURE	DESCRIPTION				
<image/>	 The calculation module performs calculation for the following limit states (failure modes): Burst – during operation as well as during system pressure test Collapse Propagating buckling Combined loading 				
<image/>	Calculates the volume, mass and dry weight of the components that constitute a pipeline, i.e. steel, coating layers and content. Volume, mass and dry weight are calculated individually and totally, per metre pipeline and totally for a given length of the pipeline.				
Expansion Figureria (1000) Figureria (1000) F	Calculates end expansion due to temperature and internal pressure. The virtual anchor length is also calculated. These two results are presented for the system pressure condition and the design condition.				

Upbeacal buckling	Estimates the safety level with respect to upheaval buckling for the given set of input, predicts the temperature, internal pressure and imperfection height that will trigger upheaval buckling and estimates the cover height to prevent upheaval buckling for a given safety level.	
Stability calculations according to DNV-RP-F109	Estimates the safety level with respect to stability for the given set of input, added weight coating and wall thickness required to ensure stability for 10D displacement criterion.	
Free span calculations according to DNV-RP-F105 Implementations according to DNV-RP-F105 <th colspan<="" td=""><td>Calculates the allowable free span length considering in-line and crossflow vortex induced vibrations. The module also gives the buckling length (pinned-fixed condition) for the given effective axial force.</td></th>	<td>Calculates the allowable free span length considering in-line and crossflow vortex induced vibrations. The module also gives the buckling length (pinned-fixed condition) for the given effective axial force.</td>	Calculates the allowable free span length considering in-line and crossflow vortex induced vibrations. The module also gives the buckling length (pinned-fixed condition) for the given effective axial force.
Reeel straining Image: straining <	Calculates maximum bending strain on the reel including a code check according to DNV-OS-F101, corresponding ovality and accumulated plastic strain during reeling, unreeling, aligning and straightening.	

Recel packing Image: State Stat	Calculates the amount of pipe that can be packed on a reel/carousel.
J-Lay and S-lay Image: State of the state of	 Calculates the following during pipe J-lay and S-lay: Actual top tension during laying Horizontal top tension Maximum curvature and moment in the sag bend including utilisation ratio according to DNV-OS-F101 Horizontal distance from touch down to barge Length of pipe in the free span and minimum horizontal lay radius

FatFree

FATIGUE ANALYSIS OF FREE SPANNING PIPELINES

Last revised: January 19, 2021. Describing version 13.0-01.

FatFree is a Microsoft Excel VBA spreadsheet for design and (re-)assessment of submarine pipeline spans in compliance with DNV-RP-F105 "Free Spanning Pipelines", issued February 2006.

UPDATE SHEET QPTIONS PRINT RESULTS CALCULATE USER HELP SPAN RUNS				FATIO	GUE ANAL	Fat] ysis of ff	F REE REE SPANI	NING PIPE	Vers. 12.0-03 LINES Release Note		[JNV	·GL ^s	<u>Support:</u> oftware.Suppor	t@dnvgl.com
FATFREE IS READY			Project: Date: Calculations by									tions by			
			References: Verified by												
Calculation	options		Code	Free Span Scenario Response Data			Soil Pr	operties		SN-C	urves		Safety F	actors	
Single-mode	-	RP-F1	•	Flat sea-bed	-	RP-F105 Sp	an 💌	Clay - Very	soft 🗾 👻	D (seawate	D (seawater cp)		•	NORMAL	-
Return Perio	d Values	I	Directionality	h [m]	110	f _o (in-line)	0.773	ζ _{struc}	0.005	m1	3	m1	3	Not well defi	ned 💌
Automatic Gen	erated 💌	Discr	ete - C dir. 👻	L [m]	40	fo(cr-flow)	0.831	ζ _{soil} (in-line)	0.020	m2	5	m2	5	η	0.50
Current Mo	delling	Cur	rent Sheet Name	e [m]	0.40	A _{in} (in-line)	111	ζ_{soil} (cr-flow)	0.020	Log(C1)	11.764	Log(C1)	11.546	γk	1.15
Uc Weibull pdf	r 🔽	Cu	irrent Template	d [m]	0	A _{cr} (cr-flow)	121	ζh,RM	0.0000	Log(C2)	15.606	Log(C2)	14.576	7fIL(inline)	1.20
Damage d	listribution		RM (In-Line) EM (In-Line)	θ _{pipe}	0.0	λ_{max}	359	K _S (in-line)	0.61	10gN _{sw}	6.00	10gN _{sw}	7.00	/fCF(cr-flow)	1.20
0.6 vs dir	vs direction	CravFire Cravfire.lms	Cross-Flow	D [m]	0.400	δ/D	0.42	K _S (cr-flow)	0.61	S ₀ [MPa]	0.00	S ₀ [MPa]	0.00	γs	1.30
0.5			L/D _s	100	S _{eff} /P _E	0.08	K _V	8.980E+05	SCF	1.40	SCF	1.00	Yon,IL	1.10	
0.4			Wave M	odelling	Wave Sh	eet Name	KL	5.968E+05	R _{cap}	0.200	R _{root}	0.180	Yon,CF	1.20	
0.3			No Wave	No Wave Vave Template K _{V,S} 7.500E+04								Ψ_R	1.00		
0.2		++++++	-/	STRUCTURAL MOD					. MODELL	ING			Special input		
0.1		+++++++	//////	Coatir	ıg data	Function	al Loads	Pipe Dimensions [m] Constants			stants	ants Densities [kg/m ³]			•
0.0 50	100 150	200	250 300 350	k _c	0.25	H _{eff} [N]	9.00E+04	Ds	0.4000	v	0.30	Psteel	7850	R _{S,C}	1.00
				f _{cn} (MPa)	42	p [bar]	0	t _{steel}	0.0200	α [°C'1]	1.17E-05	Pconcrete	1800	R _{S,W}	1.00
pdf fo	r current	-	RM(cross-flow)*4	k	3.3E-03	∆T [°C]	0	t _{concrete}	0.0000	E [N/m ²]	2.07E+11	Pcoating	940	R _{IL,strakes}	1.00
3.5	al direction		RM(inlim)*10					t _{coating}	0.0000			Pcont	0	R _{CF,strakes}	1.00
3.0								RESULTS						R _{CF-ind-IL,strakes}	1.00
2.5					FATIG	JE LIFE			D	YNAMIC S	TRESS [M	Pa]			
		In-line (Respo	nse Model)	4.93E+02	yrs		Cross-flow	-		Inline					
1.0	~ \	-		Cross-Flow		4.80E+05	yrs		Peak	Von Mises		Peak	Von Mises		
0.5								σ _x (1 year)	0.0	37.9	σ _x (1 year)	4.9	11.8		
0.0 0.2	2 0.4 e	locity 0.6	0.8 1.0	In-line (Force	Model)	-	yrs	σ _x (10 year)	0.0	37.9	σ _x (10 year)	7.0	13.1		
	0.0 0.2 0.4 0.0 0.8 1.0		In-line (Comb	ined)	4.93E+02	yrs	$\sigma_{\rm x}(100 {\rm year})$	0.0	37.9	$\sigma_{\rm x}(100 {\rm year})$	8.8	14.3			

FEATURES OF FATFREE

FEATURE	DESCRIPTION
Fatigue life	FatFree calculates the fatigue life due to:
	Combined direct wave action and in-line vortex induced vibrations (VIV)
	 Crossflow VIV based on environmental description, i.e. directional long-term distribution for current and wave (in terms of height and period)
	• Free span scenario (water depth, span geometry, soil conditions, etc.)
	 Pipe characteristics (material, geometry, SN- curve, etc.)
	 Natural frequency and mode shape from FE analyses or simplified beam theory expressions
<complex-block></complex-block>	The main sheet contains all important input and output except environmental data. It allows definition of calculation modes and links to the environmental data.

	perties	0.17		ſ	Different soil models are available for automatic calculation of damping properties, or these can be
	C	Soil Pro	oft -		defined explicitly in the 'User defined' soil:
		Lay - + ery s	0.005		User Defined
	ζεο	oil (in-line)	0.020		
	ζsoi	il (cr-flow)	0.020		Clay - Very soft
		ζh,RM	0.0000		Clay - Soft
	K	s(in-line)	0.61		
	KS	s(cr-flow)	0.61		Clay - Firm
		KI	5.968E+05		Clay – Stiff
		K _{V,S}	7.500E+04		
					• Clay - very suit
					Clay - Hard
					Sand - Loose
					Sand – Medium
					 Sand – Dense
SN-curv	/es				The user can define SN-curves for the weld root and weld cap. FatFree automatically presents the lowest
	D (compton or	SN-Ci	E2 (air)		fatione life of the two sets. The SN-curves can be
-	D (seawater cp) 🔽 F3 (air) 🗸				
I	m	3	m1	3	chosen from a set of predefined curves or user
	m1 m2	3 5	m1 m2	3 5	chosen from a set of predefined curves or user defined.
-	m ₁ m ₂ Log(C ₁)	3 5 11.764	m ₁ m ₂ Log(C ₁)	3 5 11.546	chosen from a set of predefined curves or user defined.
	m1 m2 Log(C1) Log(C2)	3 5 11.764 15.606	m ₁ m ₂ Log(C ₁) Log(C2)	3 5 11.546 14.576	chosen from a set of predefined curves or user defined.
-	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa]	3 5 11.764 15.606 6.00 0.00	m ₁ m ₂ Log(C ₁) Log(C2) logN _{sw} S ₀ [MPa]	3 5 11.546 14.576 7.00 0.00	chosen from a set of predefined curves or user defined.
	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF	3 5 11.764 15.606 6.00 0.00 1.40	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF	3 5 11.546 14.576 7.00 0.00 1.00	chosen from a set of predefined curves or user defined.
	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF R _{cap}	3 5 11.764 15.606 6.00 0.00 1.40 0.200	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF R _{root}	3 5 11.546 14.576 7.00 0.00 1.00 0.180	chosen from a set of predefined curves or user defined.
	m ₁ m ₂ Log(C ₁) log(C ₂) logN _{sw} S ₀ [MPa] SCF R _{cap}	3 5 11.764 15.606 6.00 0.00 1.40 0.200	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF R _{root}	3 5 11.546 14.576 7.00 0.00 1.00 0.180	chosen from a set of predefined curves or user defined.
	m ₁ m ₂ Log(C ₁) Log(C2) logN _{sw} S ₀ [MPa] SCF R _{cap}	3 5 11.764 15.606 6.00 0.00 1.40 0.200	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF R _{root}	3 5 11.546 14.576 7.00 0.00 1.00 0.180	chosen from a set of predefined curves or user defined.
Environr	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap	3 5 11.764 15.606 6.00 0.00 1.40 0.200	m1 m2 Log(C1) Log(C2) logNsw S ₀ [MPa] SCF R _{root}	3 5 11.546 14.576 7.00 0.00 1.00 0.180	chosen from a set of predefined curves or user defined.
Environr	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta	m1 m2 Log(C1) Log(C2) logNsw So [MPa] SCF Rroot Weibull para	3 5 11.546 14.576 7.00 0.00 1.00 0.180	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the
Environr	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat Direction Direction Se elative to protorable N	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta ector bability Sha	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rroot	$\frac{3}{5}$ 11.546 14.576 7.00 0.00 1.00 0.180 ameters $(x-\gamma)/\alpha/^{\beta})$ (α) Location (γ)	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; bistogram and, in the case of wave
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta ector bability Sha 1 3.	m1 m2 Log(C1) Log(C2) logNsw So [MPa] SCF R _{root}	3 5 11.546 14.576 7.00 0.00 1.00 0.180	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat Direction Selative to protographic N Omni 0 0.	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta ector bability Sha 1 3. 0.135 2. 245 2	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rroot F(x)=1-exp(-((pe (β) Scale e) 922 0.493 680 0.255	$\frac{3}{5}$ 11.546 14.576 7.00 0.00 1.00 0.180 0.180 (\alpha)^\B) (\alpha) \Location (\gamma) 5 0.000 5 0 0.000 5 0 0.000 5 0 0.000 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat Direction Selative to protographic N Omni 0 0 90 0	3 5 11.764 15.606 6.00 0.00 1.40 0.200 0.200 ta ector bability bability bability Sha 1.135 2.215 2.0067 3.	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF R _{root} F(x)=1-exp(-((pe (β) Scale 922 0.499 680 0.27 546 0.25 774 0.46	ameters $(x-\gamma)/\alpha)^{\beta}\beta)$ (α) Location (γ) (β) 0.000 (α) Location (γ) (α) 0.000 (α) Location (γ) (α) 0.000 (α) 0.0000 (α) 0.0000 (α) 0.0000 (α) 0.0000 (α) 0.00000 (α) 0.00000000000000000000000000000000000	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap Rcap Intervention mental dat Direction Direction Se Direction Se Omni 0 0 0, 45 90 0, 135	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta ector bability Sha 1 3. 0.135 2. 0.215 2. 0.067 3. 0.05 3. 0.05 3.	т т m2 Log(C1) Log(C2) logNsw S ₀ [MPa] SCF R _{root} Weibull para F(x)=1-exp(-((ре (β) Scale) 922 0.49 680 0.27 546 0.25 774 0.46 448 0.38 644 0.27	ameters $(x-\gamma)/\alpha/\beta$ (α) Location (γ) 5 0.000 5 0.000 8 0.000 1 -0.184 9 -0.088	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat Direction See elative to prolographic N Omni 0 0. 45 0. 90 0. 135 0. 225 0.	3 5 11.764 15.606 6.00 0.00 1.40 0.200 1.40 0.200 ta ta ta ta ta ta ta ta ta ta ta ta ta	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rroot Weibull para F(x)=1-exp(-((pe (β) Scale) 922 0.49: 680 0.27: 546 0.25: 774 0.46 641 0.27: 506 0.25:	ameters $(x, \gamma)/\alpha/\beta$ (α) Location (γ) (α) Location (γ)	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap mental dat Direction Direction See birection See Direction See Jative to proto Omni 0 0 0 45 0 90 0 135 0 225 0 270 0	3 5 11.764 15.606 6.00 0.00 1.40 0.200 ta ector bability Sha 1 3. 0.135 2. 0.215 2. 0.067 3. 0.057 3. 0.05 3. 0.154 2. 0.077 3.	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rroot F(x)=1-exp(-(ipe (β) Scale 922 0.49 680 0.27 546 0.25 774 0.46 448 0.38 641 0.27 506 0.25 922 0.49	ameters $(x, \gamma)/\alpha)^{A}\beta$ (α) Location (γ) 5 0.000 8 0.000 1 -0.184 9 -0.088 0 0.000 3 0.000 5 -0.229	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.
Environr geo	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rcap Rcap Rcap Omni 0 0 0 45 0 90 0 135 0 270 0 315 0	3 5 11.764 15.606 6.00 0.00 1.40 0.200 1.40 0.200 ta ta ta ta ta ta ta ta ta ta ta ta ta	m1 m2 Log(C1) Log(C2) logNsw S0 [MPa] SCF Rroot F(x)=1-exp(-((pe (B) Scale) 922 0.499 680 0.277 546 0.255 774 0.46 448 0.388 641 0.275 506 0.255 922 0.499 509 0.400	ameters $(x-\gamma)/\alpha)^{\alpha}\beta)$ (α) Location (γ) (α) Location	Current and wave data are conveniently defined in separated spreadsheets. Data can be inserted in the form of Weibull distribution; RPV input for Weibull distribution; histogram and, in the case of wave modelling, scatter diagram.

pinned-fixed and fixed-fixed boundary conditions. Alternatively, the user can define the response data obtained from other methods, like FE analysis.

The user can define a large number of evaluation points throughout the pipeline.

Span runs

Fatigue Life (years)													
Inline	Inline Force	Inline	Cross-flow										
Response	limie Force	Combined	Cross-now										
1.00E+06	1.00E+06	9.75E+05	1.00E+06										
3.03E+04	1.00E+06	2.95E+04	2.23E+04										
1.82E+02	1.00E+05	1.81E+02	3.46E+02										
6.29E+01	8.06E+03	6.28E+01	2.54E+01										
5.58E+01	1.10E+03	5.42E+01	1.45E+01										
9.49E+01	3.30E+02	7.85E+01	2.32E+01										

This option is used to calculate several span cases in one run. Thus, it can be used for screening purposes, to perform sensitivity studies or just to analyse many separate spans in one run and keep the input and results together in one data sheet. For each run all input data and results are presented in a single row. Input data can be conveniently imported from the main sheet.

Plots sheet

The plot sheet provides the basis for the graphical results. It also contains additional information from analysis and settings.

CODE COMPLIANCE DESIGN OF SUBMARINE PIPELINES

Last revised: March 15, 2022. Describing version 4.0-00.

ST-F101 (previously named OS-F101) is a Microsoft Excel VBA spreadsheet for checking compliance with DNV-ST-F101.

A	ВС	E F	G H	I J	К	L	M N	O P	Q R S	T U V W
2										
4										
-	DNV						DN	V-ST-F10	1 Code Co	mpliance
5	DIV							<u>v 01110</u>		mpharice
8	DNV code check against DI	IV-ST-F101		Conforn	s to DNV-ST-F	101 Ed. Aua	ust 2021	Program version	4.0.0 Lice	ence OK
10	Notes									CASE SHEETS
11	[Your notes here]								Open log	Cases:
12									openiog	
14										Load case: 0
15										Save case
17	Dimensions									Save as:
19	D 219 mm		t _{nom} 15.875 mr	ı	t _{fab} 0.1	. %	O ₀	1 %	α _{gw} 0.87	Values
20	as OD				t z	mm			Calc	No. of col.:
23	Material				*ero					INPUTS
25	Class CUSTOM	Т	°C		E 2.07E+05	MPa	Lüder plateau	No		Validate Yes
26	SMYS 450 MPa	f _{y,temp}	24 MPa		v 0.3		Suppl. req'ment U	Yes		
27	SMTS 535 MPa	f _{u,temp}	24 MPa		α _h 0.92		I			Validate
28					α _{fab} 0.93	< Manu	facturing process			
30	Internal corrosion res	stant liner	0tt			MD-				Status OK
32	Class	SMT SCRA SMTSCRA	MPa MPa	f _{y,ter}	np,CRA 80	MPa	¹ CRA	mm		
35	Pressure loads			-,						
37	poperational 344.738 barg	@ -152.4 m	ρ _{design} 250 kg	/m³	Yin	1.1		Depth	500 m	
38	p _{test} 100 barg	@ -70 m	ρ_{test} 1000 kg	(m ³				ρ _{ext}	1025 kg/m ³	
39	p _{min} 50 barg	@ -91.44 m	ρ _{min} 250 kg	/m³ /m³				Min elevation	-7 m	Calculate all
40	Pzero UDarg	@ Um	ρ zero U Kg				Bunch	Max elevation		DEGION
42	waii thickness design			Safe	ty		Liner	Kuri 📑 Collaps	Reg th	DESIGN
44				Cond. clas	s Corr.	Eroded	Derated strength	Code check	[mm] Util.	Calculate
45	p It 398.2 barg		Op	eration High	Yes	Yes	Yes	Burst, operation	14.78 0.903	
46	ph 674.5 barg		Sy	stem test System	test No	No	No	Burst, system test	2.33 0.137	Burst OK
47			Mir	n pressure Medium	Yes	Yes	No	Collapse Prop. buckling	0.00 0.000	Collapse UK P. Buck OK
49			<u>[211</u>	Pty Intediuli	165	165	140	LCC Dur	11.05 0.000	
50	Load Interaction	- F		0-6-	•			LCC RUN	Dec Run	LOAD INT.
53	Lo	ad Load	Ve	Cond. clas	is Corr.	Eroded	Liner Derated strenath	Code check	req. tn. [mm] Util.	Calculate
54	Moment Moment 1.00	E+02 3.00E+01 kNm	1.07 Op	eration Medium	Yes	Yes	Yes	LCC, comb. a	16.83 1.197	
55	Force AxialForce 8.00	F+021 4.00F+021kN	1.07	DCC Denert				I.CC. comb. b	17.76 1.411	Lcc OK
4	summary Mail	Burst-Report CP	B-Report LCC-Report	DCC-Report	(+)				: [4]	

FEATURES OF ST-F101

FEATURE		DESCRIPTION				
Main sheet E 2.07E+05 MPa v 0.3 Q 0.92 Strain hardening Maximum allowed yield to terratio. Used for DCC only. fy.th Set automatically when chang material class. Ref. DNV-ST-F101:2021, Table Table 7-11.	Lüder plateau No Suppl. req'ment U Yes	All input and results are shown in short form on the Main sheet. Explanations are given as comments in the relevant cells.				
Code checks Code check Burst, operation Burst, system test Collapse Prop. buckling	Req. th. [mm] Util. 14.78 0.903 2.33 0.137 0.00 0.000 14.09 0.666	 The following code checks are included: Burst (pressure containment) related to both system test condition and operation Collapse for an empty pipeline Propagating buckling for an empty pipeline Load controlled load interaction 				
Code check LCC, comb. a LCC, comb. b DCC, comb. a DCC, comb. b	Req. th. [mm] Util. 16.83 1.197 17.76 1.411 6.68 0.730 6.70 0.752	 Displacement controlled load interaction The program calculates: The minimum required wall thickness for the given conditions Utilisation based on a wall thickness given by the user 				

Reported sheets				When calculation is done, report sheets are created
		OPERATIONAL	SYSTEM TEST	automatically for all code checks (collapse and
Nominal inner steel diameter:	OD	219.0	mm	and a setting here the set of the
Nominal steel wall thickness:	tnom	15.88	mm	propagation buckling are reported in a single sheet).
Fabrication tolerance:	t _{tab}	0.10	%	
Nominal corrosion allowance:	tcor	2.00	mm	These report chests are meant for non-armint out
Nominal coston allowance:	r _{ero}	2.00	mm	These report sheets are meant for paper print-out
Specified minimum yield stress:	SMYS	450.0	MPa	and inclusion in reports. They contain all relevant
Specified minimum tensile strength:	SMTS	535.0	MPa	and inclusion in reports. They contain all relevant
Derating in yield stress due to temperature:	f _{y.temp}	24.0	MPa MPa	input, some intermediate results (to ease external
Internal corrosion resistant layer (CRA liner):	u,temp	24.0	med	Input, some internetiate results (to ease external
Internal corrosion resistant layer (CRA liner) type:			type	verification) and the results from the code check
Specified minimum yield stress for CRA liner:	SMYSCRA		MPa	
Yield stress de-rating value of CRA liner: Material strength factor:	I _{y,temp,CRA}	1.00	MPa 1.00	
Internal pressure at reference level:	Pintret	344.7 barg	100.0 barg	
Reference level for internal pressure:	Z mt	-152.4 m	-70.0 m	
Density of internal fluid:	Pint	250.0 kg/m ³	1000.0 kg/m ³	
incidental to design pressure ratio:	Vinc	1.10	1.00	
Depth: Density of external fluid:	α Pext	1025.0 kg/m ³	1025.0 kg/m ³	
Safety Class:		High	Low	
Corroded wall thickness:		Yes	No	
Derated material properties: INTERMEDIATE RESULTS			SYSTEM TEST	
Characteristic yield stress:	f _y	426.0 MPa	450.0 MPa	
Characteristic ultimate strength:	f _u	511.0 MPa	535.0 MPa	
Characteristic yield stress for liner: Steal wall thickness used in code checks	f _{y,CRA}	- MPa	- MPa	
Characteristic corrosion allowance:	tear	2.00 mm	0.00 mm	
Characteristic erosion allowance:	tero	2.00 mm	0.00 mm	
Characteristic liner wall thickness:	t cra	- mm	- mm	
Pressure containment resistance, yielding limit state: Pressure containment resistance, ultimate limit state;	P b.s	563.2 barg	811.3 barg 838.8 barg	
Pressure containment resistance, minimum of pb,s & pb,u:	P 5.0	563.2 barg	811.3 barg	
Pressure containment resistance from liner:	P B,CRA	- barg	- barg	
Pressure containment resistance combined (including liner):	P b.com	- barg	- barg	
Safety class resistance factor:	Y m	1.15 -	1.05 -	
Local design pressure:	Pid	353.3 barg	142.2 barg	
Local incidental/test pressure:	p _{ix}	387.7 barg	142.2 barg	
External pressure: Pressure difference:	P.	49.6 barg	49.6 barg	
PRESSURE CONTAINMENT, BURSTING	PIXTPO	OPERATIONAL	SYSTEM TEST	
Code check, utilisation:		0.903 OK	0.137 OK	
Minimum required nominal wall thickness:		14.78 mm	2.33 mm	
Parametric studies				Case sheets allow the user to perform parameter studies/sensitivity studies on each case. E.g.
		Puret operation		
		-Burst, operation		calculate minimum required wall thickness for
		Burst, system test		
	_	Collanse		varying depths.
	\rightarrow	Propagating buckling	3	
		Etoad Interaction 15	ad Controled a	
S 230		coau interaction, Lu	a controlea, a	
	-	►Load interaction, Loa	ad Controled, b	
300		- Load interaction Di-	placement Controlod	
	_	Load Interaction, Dis	placement controled, a	
		 Load interaction, Dis 	placement Controled, b	
350				
350	35			
350 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35			
350	35			

RP-F101

SPREADSHEET FOR ASSESSMENT OF CORRODED PIPELINES IN COMPLIANCE WITH DNV-RP-F101

Last revised: March 2, 2016. Describing version 1.0-01.

The RP-F101 spreadsheet is a Microsoft Excel VBA spreadsheet developed by DNV GL for assessment of corroded pipelines in compliance with DNV-RP-F101 "Corroded pipelines" Part A.

The RP-F101 spreadsheet contains modules for assessment of:

- Single defects using relative and absolute depth measurements
- Single defect under combined loading (internal pressure and compressive stress)
- Interacting defects
- Complex shaped defects

11	RELE	/ANT IN	PUT PARAMETERS:			Values				
12			Safety class, mate	rial and inspection cap	abilities		Base case	Optional		
13				Safe	ty Class:	SC	LOW	BEST ESTIMATE		
14				Material	req. "U":`	MR	YES			
15				Materi	al Grade:	MG	X65			
16			_	Specified minimum yiel	SMYS	448,20		MPa		
17			Spe	ecified minimum tensile	strength:	SMIS	530,90		мРа	
18			D	erating value of tensile	strength:	t _{u,temp}	15,00		MPa	
19				Inspection	method:	IM	Relative MFL			
20				Inspection confider	nce level:	ICL	80,00		%	
21			0	Inspection sizing a	ccuracy:	ISA	10.0 %		+/-	
22			Geometry, load	, density and reference	e neight	00	012.00			
23				Nominal outer steel u	liameter:	.00	812,80		mm	
24				Nominal steel wall th	ickness:	(nom	19,10		mm	
25			Inter	nal pressure at referenc	e height:	Pint	150,00		bar	
26			In	cidental to design press	ure ratio:	γ_{inc}	1,10		-	
27				Reference	e height:	h_{ref}	30,00		m	
28				Containment	density:	ρ_{cont}	200,00		kg/m ³	
29				Water	density:	ρ_w	1025,00		kg/m³	
30				Specification of de	fect size					
31				Height a	t defect:	h _d	-100,00		m	
32				Defe	ct depth:	d	4,78		mm	
33				Defe	t length:	1	200,00		mm	
34	INTER	RMEDIAT	TE RESULTS:					Values		
35				Relative defect dep	oth (d/t):	d/t	0,250	0,250	-	
36				Standard deviation	of (d/t):`S	StD[d/t]	0,078	0,000	-	
37		Partial	safety factor for longi	tudal corrosion model pi	rediction:	γ_{m}	0,900	1,000	-	
38			Partial s	afety factor for corrosic	on depth:	Yd	1,201	1,000	-	
39		Fac	ctor for defining a fract	ile value for the corrosic	on depth:	ε _d	0,964	0,000	-	
40				Material strengt	h factor:	α,,	1,000	1,000	-	
41			Tens	ile strength to be used i	n design:	fu	515,90	515,90	MPa	
42	RESU	LTS:						Values		
43			<i>I</i>	Allowable diff. pressure a	t defect:	Pcorr	192,1	240,3	bar	
4	•	Main	Adittional defects	Interacting defects	Complex	k shape	Combined loading	(+)		

FEATURES OF RP-F101

FEATURE	DESCRIPTION
<section-header></section-header>	 Used for assessment of single defects. There are two set of input parameters: Base case: All of the base case parameters must be entered. All other features of the RP-F101 spreadsheet make reference to these values. Optional: This set of parameters is meant for sensitivity study by comparison to the base case input. Input that is left blank will be equal to the base case input.
	An extension of the main sheet where multiple defects can be assessed for the base case set of parameters in the main sheet. The calculations performed in the additional defects sheet make use of the base case parameters in the main sheet, but where the defect depth, defect length and height at defect is changed to a list of defects.
Interacting defects Image: state stat	Used for assessment of interacting defects as per section 3.8 of DNV-RP-F101. To assess the pressure resistance of a pipeline with a set of interacting defects. The list of defects is entered with start position, defect depth and length. All defects in the defect list are projected onto a projection line to obtain the wall thickness profile. Overlapping of defects is handled automatically by the spreadsheet.

SimBuck

SIMPLIFIED GLOBAL BUCKLING ANALYSIS OF SUBMARINE PIPELINES

Last revised: August 22, 2017. Describing version 2.0-02.

SimBuck is a Microsoft Excel VBA spreadsheet developed by DNV GL for preliminary design and verification of global buckling potential for submarine pipelines in compliance with DNV-RP-F110 'Global Buckling of Submarine Pipelines – Structural Design due to High Temperature / High Pressure', issued October 2007.

SimBuck performs:

- Single buckle assessment for exposed pipeline on even seabed
- Multi-buckle assessment for exposed pipelines on even seabed
- Checks for upheaval buckling potential

FEATURES OF SIMBUCK

FEATURE	DESCRIPTION
<complex-block></complex-block>	All input and output for single buckle analysis can be accessed through this sheet. This will provide preliminary design solutions on pre-buckling assessment, post-buckling pipe integrity check and sharing criterion evaluation.
Pipeline cross-sectional Geometry	Derived parameters such as pipeline's second moment of area, steel's cross-sectional area and submerged weight per metre are automatically calculated by defining diameters, wall thicknesses and densities of the different pipeline layers: steel, pipeline coatings (up to 5 layers) and concrete.
Graphical results	Result plots are created automatically in the Single Buckle sheet and in the plots sheet.

Parametric Runs	Used to run several lateral buckling cases (single			
Input file name Pr Output file name Re 1. Pre buckle assessment 2. Pipe in Sw [N] Buckling pc Smin,curve[N] Rmin.eq [m] Feed-in [m] Lbuckle [m] S -1513583 Yes -128546 250 0.005129 108.5539 -2 -1507663 Yes -128213 250 0.00523 108.6947 -2 -1501751 Yes -127548 250 0.00534 108.8361 -2 -1495847 Yes -127548 250 0.00544 108.978 -2 -1489950 Yes -127215 250 0.005549 109.1205 -2 -1484061 Yes -126882 250 0.00566 109.2636 -2 -1478180 Yes -126549 250 0.005774 109.4072 -2	buckle), ideal for screening, performing sensitivity analyses, or simply analysing many separate cases and keeping all the input and output results together on a single data sheet.			
$\frac{\text{Subtle Buckle Assessment}}{\frac{1}{1}}$	Provides additional functionality for analysing an entire pipeline. Buckling triggers can either be specified manually or calculated by SimBuck.			
UHB Sheet Output to name Intermit To the same Output to the same Intere	Assessment of upheaval buckling based on deterministic approach according to DNV-RP-F110.			

StableLines

ON-BOTTOM STABILITY DESIGN OF SUBMARINE PIPELINES

Last revised: October 5, 2018. Describing version 1.7-01.

StableLines is a Microsoft Excel VBA spreadsheet for design and assessment of on-bottom stability for submarine pipelines in compliance with DNV-RP-F109 'On-Bottom Stability Design of Submarine Pipelines'.

	Α	В	С	D	E	F	G	H		J	K	L	M	N	0	P	Q	R	S			
1	Open	Case	Save 0	Case	Update Steel op.	Update Steel em	STABLELINES v1.5-02															
3 4	Calcu	ulate	Create Parametr	new ric runs	Update Conc. op.	Update Conc em		On-Bottom Stability of Submarine Pipelines						DNV·GL Support: Software.Support@DNVGL.com				łL.com				
5	Output fi	ile name		Case	1		Project:					Date:		Calculation	ıs by							
6	Input file	e name		Case	1		References:							Verified by								
7	Outpu	it path		C:	\StableLine	s\Example					Re	turn Period	Values fo	for Wave and Current								
8	Input	path		C	StableLine	s\Example	Boundary layer correction for current						Number of directional combinations considered 12									
9 10		Pipe	line data		Soil inte	eraction	Environ Param	imental neters	Wave dir. [deg]	Current dir. [deg]	H _{s,1-year} [m]	H _{s,10-year} [m]	H _{s,100-year} [m]	T _{p,1-year} [s]	T _{p,10-year} [s]	T _{p,100-year} [s]	U _{c,1-year} [m/s]	U _{c,10-year} [m/s]	U _{c,100-year} [m/s]			
11	D _{total} [m]	0.6000	Pipe	-	Clay	-	s	8	0	0	12	14	16	16	17	18	0.5	0.55	0.6			
12	$\theta_{pipe}[deg]$	90	ρ _{water} [kg/m ³]	1025	z ₀ [m]	5.00E-06	z _r [m]	3	30	30	12	14	16	16	17	18	0.5	0.55	0.6			
13	D _s [m]	0.4	ρ _{steel} [kg/m ³]	7850	z _t [m]	-	d [m]	100	60	60	12	14	16	16	17	18	0.5	0.55	0.6			
14	t _{steel} [m]	0.0150	ρ _{conc} [kg/m ³]	2450.0000	z _{pu} [m]	-	θ_t [deg]		90	90	12	14	16	16	17	18	0.5	0.55	0.6			
15	t _{conc} [m]	0.1000	ρ _{mgrt} [kg/m ³]	1350.0000	r _{tot,y}		- γ	3.3	120	120	12	14	16	16	17	18	0.5	0.55	0.6			
16	t _{mgrt} [m]	0.0000	ρ _{cont} [kg/m ³]	800.0000	r _{tot,z}	-	T _{storm} [hrs]	3	150	150	12	14	16	16	17	18	0.5	0.55	0.6			
17	l _{FIC} [m]	0.0000	ρ _{FJC} [kg/m3]	0.0000	fperm,z	-	Stability	Criterion	180	180	12	14	16	16	17	18	0.5	0.55	0.6			
18		Coat	ting data		μ	-	10D Displace	ement 💌	210	210	12	14	16	16	17	18	0.5	0.55	0.6			
19	Coating thi	ickness [m]	Coating Dens	sity [kg/m³]	$\gamma_{s} [N/m^{3}]$	3	τ	603	240	240	12	14	16	16	17	18	0.5	0.55	0.6			
20	t _{coat,1}	-	P coat,1	-	$\gamma_{s}[N/m^{3}]$	18000	Sg,operational	2.12	270	270	12	14	16	16	17	18	0.5	0.55	0.6			
21	t _{coat,2}		P coat,2	-	$s_u[N/m^2]$	10000	YSC, empty		300	300	12	14	16	16	17	18	0.5	0.55	0.6			
22	t _{coat,3}	-	P coat,3	-	Gc	0.93	YSC, operation	-	330	330	12	14	16	16	17	18	0.5	0.55	0.6			
23	t _{coat,4}		P coat,4		z _{pi} /D		y/D	1.1	Calculate	g with RP-F109	C Optimi	ze	_						_			
24	t _{coat,5}	-	P coat,5			Initial	penetration f	or water-fille	ed pipe 📃	Initial p	penetration for	or water-filled	l pipe 📃		Calc	culate nece	ssary thick	ness	v			
25 26	Necess	sary weig	ht v.s directi	ons		De	sign conditio	n for empty	r pipe	ipe Design condition for pipe in operation Concrete thick					e thicknes	s vs densi	ty	in in in the				
27	6000					1-year and	10-year RPV C	ombination	-	10-year and 1	00-year RPV C	ombination	-	E 350 (ing i meniler			
28	5000 -				_		Results - E	aiq vtamE	e	Res	sults - Pipe	in operati	on	g 300.0								
29	4000 -			▼ +	*									Ü 250.0								
30	30 \$ 3000			Ws	, [N/m] 2329			w₅ [N/m] 3173			9 200.0 15 150.0											
31	31 2000			W _{s, requi}	_{ired} [N/m]	3	602	w _{s, required} [N/m] 4867			67	a 100.0	í — —									
32	1000 -					t _{conc,a}	_{dded} [m]	0.	038	t _{conc.added} [m] 0.063 g 50.0												
33	0 +	1 2 3	4 5 6 7	8 9 10	11 12	t _{steel,a}	_{dded} [m]	0.	014	t _{steel,added} [m] 0.019			O 0.0	1950 2117	2283 2450 26	17 2783 2950	3117 3283 34	150				
34 directions			Ws, vert	_{ical} [N/m]	2	84	Ws, vertic	_{al} [N/m]	28	34			C	ensity [kg/m	~1							

FEATURES OF STABLELINES

FEATURE	DESCRIPTION
	The user can input all the relevant data, calculate and view results for a single stability case using the main sheet.
Stability for pipeline and umbilicals	 The user can check stability for either pipelines or umbilicals. Dimensions and weights are automatically calculated through the user defined thicknesses and densities. Two stability methods are available: Absolute stability Generalized lateral stability method with displacements up to 10D
Soil interaction Clay Clay Clay Rock Coulomb friction Ttotz 0.99 Tperm.z 1 0.20	 Four different soil models are available: Sand Clay Rock User defined Coulomb friction

Results presentation	The user can check graphical representation of the stability results such as (but not restricted to):
Necessary weight v.s directions	Required submerged weight as function of direction
	Required concrete thickness as function of concrete density (pipeline mode)
x 3000 2000 1000	Required weight as a function of outer diameter (umbilical mode)
0 1 2 3 4 5 6 7 8 9 10 11 12 directions	StableLines also suggests added steel and concrete/armour thicknesses to make unstable pipelines stable.
Report Sheet	Report of final and intermediate results ready for
RELEVANT INPUT PARAMETERS:	
Nominal outer steel diameter: D. 0.4 m	
Direction of nineline: A 90 deg	
Density water: ρ_{water} 1025 kg/m ³	
Steel thickness: t _{steel} 0.0150 m	
Concrete thickness: t _{conc} 0.1000 m	
Marine growth thickness: t _{mgrt} 0.0000 m	
Auxilliary coating layer thicknesses	
t _{coat,1} 0.0000 m	
t _{coat,2} 0.0000 m	
t _{coat,3} 0.0000 m	
t _{coat,4} 0.0000 m	
t _{coat,5} 0.0000 m	
Parametric runs	Calculate several on-bottom stability cases in one
Ws, required tonc, added tsteel added Ws, vertical Ws, required tonc, added tsteel added Ws, vertical Ws, required tonc, added tsteel added Ws, vertical Ws, vertical [N/m] [N	run. Can be used for screening purposes, to perform
we from the sent the sent we from the sent the sent sent sent sent sent sent sent sen	sensitivity studies or just to analyse many separate
2329 3602 0.0378 0.0142 284 3173 4867 0.0632 0.0191 284	cases in one run and keep the input and results
2395 3764 0.0396 0.0137 334 3482 5080 0.0577 0.0163 334	together in one data sheet.
<u>2421 3933 0.0427 0.0138 387 3782 5305 0.0538 0.0142 387</u>	

Helica

CROSS-SECTIONAL ANALYSIS OF FLEXIBLE PIPES, UMBILICALS AND POWER CABLES

Last revised: March 3, 2019. Describing version 3.0.

Helica is a stress analysis tool tailor made for cross-section analysis of flexible pipes, umbilicals and power cables.

The description of Helica is organised in sections:

- Cross-sectional load sharing analysis
- Short-term fatigue analysis
- Long-term fatigue analysis
- Extreme analysis
- VIV fatigue analysis
- Validation

FEATURES OF HELICA

Cross-sectional load sharing analysis

FEATURE		DESCRIPTION			
Stiffness and twis	t characteristics Response Boundary condition, axial displ. Boundary condition, torsion displ. Effective axial force [N] End-cap force (pressure load) [N] True axial force [N] Axial displacement [mm] Axial stiffness [N] Torsional displacement (twist) [rad] Torsional displacement (twist) [rad] Torsional displacement ratio Helix bending stiffness, axial, stick [Nmm2] Helix bending stiffness, bending, stick and slip [Nmm2] Cylinder layer bending stiffness [Nmm2] Bending stiffness, full stick [Nmm2] Bending stiffness, full slip [Nmm2]	 Helica may consider one or more load cases, i.e. combinations of tension, curvature and torque (left or right) for various boundary conditions. For each load case specified by the user, Helica calculates stiffness characteristics and/or angle of twist. 			
Axial load distribu	Axial force in layers	For a load case specified by the user, Helica determines the axial load distribution between layers in the cross-section.			
Layer contact	Layer contact pressure	For a load case specified by the user, Helica determines the contact pressure on each layer resulting from applied tension. External (e.g. hydrostatic) pressure is accounted for, if applicable.			

Short-term fatigue analysis

Long-term fatigue analysis

FEATURE	DESCRIPTION					
Accumulation of fatigue damage	Average long-term fatigue damage is found by weighting the damage calculated for selected short- term conditions by the probability of occurrence. The load cases (e.g. locations along the riser) and conditions (e.g. representing one or more offsets) to be considered in the long-term fatigue analysis are specified by the user.					
Output DAMAGE PER BLOCK 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 10% 0 00% 0 12 3 4 00% 1	 The output from the analysis is: accumulated long-term fatigue damage, long-term stress cycle distribution, and relative contributions from short-term conditions to the long-term fatigue damage. 					

Extreme analysis

VIV fatigue analysis

Validation

FEATURE	DESCRIPTION
<image/>	 JIP has been executed with participation from ExxonMobil, Shell, Technip, Oceaneering and ABB. Objective: validation of umbilical stress calculation by full-scale tests Test results for 2 steel-tube umbilicals Measurements of strain in umbilical tubes at multiple locations Exposed to tension, bending and internal pressure in tubes
	Outstanding correlation between Helica and full- scale test result has been found. Results are documented in public domain (ISOPE 2016).

FNCorrosion

CATHODIC PROTECTION SYSTEM ASSESSMENT

Last revised: August 2019. Describing version 18.0-00 (64-bit).

FNCorrosion brings the capability to assess cathodic protection systems within the Sesam tool chain. FNCorrosion solves the electromagnetic potential around submerged structures using the Boundary Element Method. Surface electrochemical characteristics can be defined by the Tafel equation, or by input table. Representation of coatings and marine growth can be included using a surface area factor. Single- or multi-zone ICCP systems can be included. Moreover, they can be included in combination with sacrificial anode elements for assessments of hybrid systems.

Re-use Sesam structural and hydrodynamic models to assure cathodic protection coverage reaches all wetted surfaces. Simulate snapshots of system performance throughout life cycle. It can be updated with measured values for calibration and enhanced forward system performance predictions.

FEATURES OF FNCORROSION

FEATURE	DESCRIPTION
Mesh import from GeniE FEM format	 Requirements: Sets containing separate boundary surfaces Correct surface normals Second-order shell elements only SWL must be a plane at z=0m, and no mesh elements should in z>0m Mesh does not need to be watertight.
State Accel State State <td< td=""><td> Functions: Import Sesam FEM mesh as input Define material boundary conditions Define ICCP system Set solver settings Save run files Execute run View results by launching <u>Xtract</u> </td></td<>	 Functions: Import Sesam FEM mesh as input Define material boundary conditions Define ICCP system Set solver settings Save run files Execute run View results by launching <u>Xtract</u>
Surface electrochemistry boundary conditions	Input types: • Tafel equation inputs (pictured left) • Input table representing Tafel curve • Fixed current (in/out) • ICCP current (controlled) • Zero current • Surface area factors: • Coating integrity • Marine growth or other surface factors

ICCP system definition	 Input types: Mesh node ID for reference electrodes Target potential at reference electrode Initial ICCP current output Controller gain/offset/tolerance Multiple zones are available and can be used in combination with sacrificial anodes.
Visualise results in <u>Xtract</u>	 Visualise: Surface potential (V) Surface current density (A/m²)

About DNV

We are the independent expert in risk management and quality assurance. Driven by our purpose, to safeguard life, property and the environment, we empower our customers and their stakeholders with facts and reliable insights so that critical decisions can be made with confidence. As a trusted voice for many of the world's most successful organizations, we use our knowledge to advance safety and performance, set industry benchmarks, and inspire and invent solutions to tackle global transformations.

Digital Solutions

DNV is a world-leading provider of digital solutions and software applications with focus on the energy, maritime and healthcare markets. Our solutions are used worldwide to manage risk and performance for wind turbines, electric grids, pipelines, processing plants, offshore structures, ships, and more. Supported by our domain knowledge and Veracity assurance platform, we enable companies to digitize and manage business critical activities in a sustainable, cost-efficient, safe and secure way.